CHAPTER 4, FORM A TRIGONOMERY

- 1. Which one of the six trigonometric functions has a period of π and passes through the point (0, 0)?
- 2. Give all of the basic trigonometric functions that satisfy the condition: the range is $(-\infty, \infty)$.
- 3. Use the ranges to explain why the secant function can attain the value of 2 but the cosine function cannot.
- **4.** True or false: $y = 3 \cot x$ and $y = \frac{1}{4 \tan x}$ have the same graph.
- 5. What is the minimum value of $y = 3 + \cos 2x$?
- **6.** Which of the following is the equation of the cosine function with amplitude 4 and period π ?

a.
$$y = 2 \cos 2x$$

b.
$$y = 4 \cos(x + 2)$$

c.
$$y = 2 \cos 4x$$

d.
$$y = 4 \cos 2x$$

For each defined function, give the amplitude, period, vertical translation, and phase shift, as applicable.

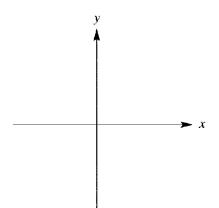
7.
$$y = -3 \sin x$$

8.
$$y = \cos 2x + 3$$

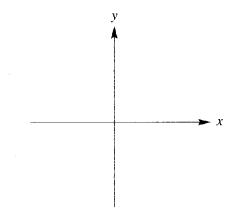
9.
$$y = \sec\left(x + \frac{\pi}{2}\right)$$

10.
$$y = 3 - \tan 2x$$

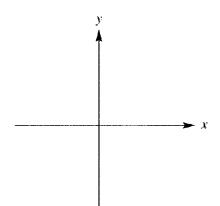
11.
$$y = 3\cos 2\left(x - \frac{\pi}{4}\right)$$

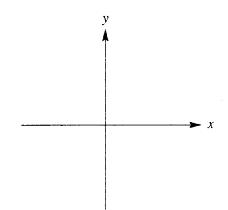

12.
$$y = 4 - \frac{3}{4}\sin(3x - \pi)$$

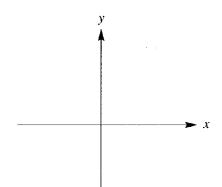
NAME Date	3
1.	
2.	
3.	
4.	
5.	
6.	

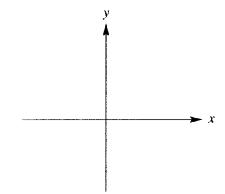

7.	

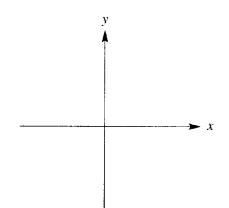
Graph each defined function over a one-period interval.

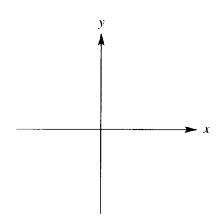

13.
$$y = 5 \sin x$$


14.
$$y = 3 - 2 \cos x$$


15.
$$y = \frac{1}{4} \sec x$$


16.
$$y = 3 \tan x$$


$$17. \quad y = -\sin\left(x + \frac{\pi}{2}\right)$$


$$18. \quad y = \csc\left(2x + \frac{\pi}{2}\right)$$

$$19. \quad y = \tan\left(\frac{x}{2} + \frac{\pi}{4}\right)$$

20.
$$y = -2 + \frac{1}{2}\cos(2x - \pi)$$

CHAPTER 5, FORM B TRIGONOMETRY

functions of x.

1. Given $\cos x = -\frac{3}{4}$, with x in quadrant II, find the remaining five trigonometric

1.

Given $\sin x = -\frac{1}{2}$, where $180^{\circ} < x < 270^{\circ}$. Find each of the following.

2. cot *x*

2. ______

3. $\cos x$

3.

Let $\sin s = -\frac{2}{3}$, with s in quadrant III and let $\cos t = -\frac{1}{3}$, with t in quadrant

- II. Find each of the following.
 - **4.** $\cos(s-t)$
 - 5. $\sin(s + t)$
 - **6.** $\sin 2s$
 - 7. $\tan \frac{t}{2}$

- 4. _____
- 5. _____
- 6. ____
- 7. _____

Suppose $x = \frac{5\pi}{12}$. Use the indicated identity to find the exact value of each of the following.

- 8. $\sin x$, sum identity
- 9. cos x, half-angle identity (Not testing)

- 8.
- 9.

Answer true or false for each of the following.

- 10. $\sin 47^{\circ} = 2 \sin 94^{\circ} \cos 94^{\circ}$
- 11. $\cos{(-19^\circ)} = -\cos{19^\circ}$
- 12. $\cos 84^\circ = \cos 51^\circ \cos 33^\circ \sin 51^\circ \sin 33^\circ$
- 13. $\sin 38^\circ = 1 2 \sin^2 19^\circ$
- **14.** Explain how to derive a formula for $\sin (A B + C)$.

- 10. _____
- 11.
- 12.
- 13.
- 14.

CHAPTER 5, FORM B, PAGE 2

Use identities to express each of the following in terms of $\sin \theta$ and $\cos \theta$, and simplify.

15.
$$\sec \theta + \sin \theta$$

16.
$$\frac{\sec\theta\csc\theta}{\tan\theta\cot\theta}$$

Verify that the equation is an identity.

17.
$$\frac{\sec^2 \beta}{\tan \beta} = \frac{\cot^2 \beta - \tan^2 \beta}{\cot \beta - \tan \beta}$$

18.
$$1 - \cos x = \frac{2}{\csc^2 \frac{x}{2}}$$

19.
$$\sin 2\beta = 2\sin^3 \beta \cos \beta + 2\sin \beta \cos^3 \beta$$

20.
$$2 \tan \alpha \sin \alpha \sec \alpha = 2 \sec^2 \alpha - 2$$

Ch.4 was included in the Midterm 2 material.

CHAPTER 7. FORM A TRIGONOMETRY

1. Given that b = 30 and c = 42 in a triangle ABC, which of the following is impossible.

a.
$$a = 80$$

b.
$$a = 63$$

c.
$$a = 29$$

d.
$$a = 15$$

Find the indicated part of each triangle ABC.

2.
$$B = 42.2^{\circ}$$
, $C = 108.7^{\circ}$, $b = 34.48$ m; find A .

3.
$$C = 39^{\circ} 30'$$
, $c = 61.3$ ft, $b = 80.5$ ft; find B.

4. Explain what the Law of Sines becomes when one of the angles is a right angle.

NAME

DATE ____

Solve each triangle ABC having the given information.

5.
$$a = 28$$
 ft, $b = 34$ ft, $c = 42$ ft

6.
$$B = 125^{\circ} 20'$$
, $a = 81.5$ cm, $c = 59.8$ cm

7. Find the area of triangle ABC, given that $C = 25^{\circ} 35'$, a = 18.5 cm and b = 24.6 cm.

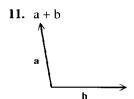
Solve each problem.

8. The sides of a triangular lot measure 260 ft, 190 ft, and 310 ft. Find the area of the lot.

9. A plane travels at a bearing of 49.5° from point A for 79.4 mi. The plane then travels for 124.6 mi at a bearing of 149.3°. How

8. _____

far is the plane from point A?


Only to here for mid-term #3

10. True or false: the resultant vector bisects the

angle between the two component vectors.

10. _____

Sketch the indicated vectors.

