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§9.4 Polar Coordinates 
 
Polar coordinates uses distance and direction to specify a location in a plane. 
 
The origin in a polar system is a fixed point from which a ray, O, is drawn and we call 
the ray the polar axis (what we would have called the initial side in previous study). The distance 
from O to P (P is the endpoint of a ray rotated through an angle θ; what we would have called a terminal 
point in previous study). The distance from O to P is called “r”, the radius. P is assigned an 
ordered pair determined by “r” and θ, and labeled with the polar coordinates P(r, θ). 
 
   In P(r, θ) 
    r = distance from O to P 
    θ = Angle that OP makes with the polar axis 
 
 
          *Note: A negative r lies on the opposite end of the ray with angle θ 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Example: Plot P(2, π/6) & P(3, 2π/3) and then give 2 other polar coordinates for these 

points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

O 

P(r, θ) = P(-r, θ – π), P(r, 2nπθ) 

θ 

P(-r, θ – π) 

–r 

r 
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   x    =  cos θ    so    x = r cos θ 
   r 
 
   y    =  sin θ     so     y = r sin θ 
   r 

}in the Cartesian system 

 r2 = x2  +  y2     &    tan θ  =    y    
     x 
 

The relationship between Cartesian & Polar coordinates is the relation that we saw in 
right triangles on the unit circle. The following is what we need to know to change polar 
to Cartesian coordinates. 
 
 
 
 
 
 
 
 
Thus,  P(1, π/6) is x = 1 cos π/6  =  1 • √3/2   
    y = 1 sin π/6  =  1  •  1/2 
 
  P(2, π/6) is x = 1 cos π/6  =  2 • √3/2  = √3 
    y = 1 sin π/6  =  2  •  1/2  =  1 
 
 Example: Find P(-3, 2π/3) in the Cartesian system 
 
 
 
 
 
*Note: We saw that this point lies in QIV earlier and that is what the Cartesian coordinates show. 
 
Now, we will go from Cartesian to polar coordinates. We will need to know the 
following to help us in this process. 
 
 
 
 
 
 Example: What are the polar coordinates of (-√6, -√2) 
   *#38 p. 546 of  Stewart’s Precalculus Ed. 6 
 
 
 
 
 
*Note: You must be careful because the quadrant information must still conform, hence why we don’t use 
π/6 and instead use 7 π/6 
 

}in the Cartesian system 
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}r = a sin nθ  or  r = a cos nθ 

  
The Polar Coordinate System consists of concentric circles with their center at O, the 
origin. The circles represent r, the lines emanating from O represent rays with varying 
angles θ made with the polar axis. Here is one example of a polar system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Some places that you might locate polar graph paper for your use are: 
 http://www.marquis-soft.com/graphpapereng.htm 
 http://mathematicshelpcentral.com/graph_paper.htm 
 
Here’s what you need to learn – just as in Algebra, certain functions have certain graphic 
representations and certain features that lead to key graphic features. We are going to 
learn some of the basic polar equations and their graphic representations. Here is what 
you need to know, much of which you will find in the supplementary text book by 
Stewart on p. 553 of Ed 6: 
 
 Circles  r = a  (center at zero) 
   r = 2a sin θ (center at | a |, (a, π/2) ) 
   r = 2a cos θ (center at (a, 0) ) 
 
 Spiral  r = aθ 
 
 Straight Lines thru Origin θ = a 
 
 Cardioids r = a(1 ± cos θ) 
   r = a(1 ± sin θ) 
 
 Roses  n-leaved when n is odd 
   2n-leaved when n is even 
 
 Limacon r = a ± b cos θ  If a < b then there is a loop, if a > b then dimpled 
   r = a ± b sin θ  If a = b then it is a Cardioid 
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 Lemniscates r2 = a2 sin 2θ  symmetric about y = x 
   r2 = a2 cos 2θ  symmetric about the x-axis 
 
You need to go over the examples in the supplemental  Stewart text on p. 548-551 of Ed 
6 paying attention to: 
 1) Cartesian Graph (if even possible) 
 2) One to one correspondence of the Cartesian & polar coordinates in  
  Example 1 through 6 
 3) Link between §8.1 & 8.2 in changing between polar & Cartesian  
  coordinates. Note that an easy change seems to show 1:1 correspondence  
  in graphs. 
 4) Pay attention to the equations & picture lines as this is probably one of the  
  places that I will test you. 
   Ex. r = 2 + 2 cos θ  What would the general shape of the graph be? 
 5) Symmetry (we will discuss this next) 
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§9.5 Vectors  
A vector involves 2 measures, one of direction and one of magnitude. We can represent 
vector quantities with a directed line segment in which the length represents the 
magnitude and the angle represents the direction. Vectors, like line segments, can be 
written using 2 capital letters or a single lower or upper case letter. Because vectors are 
directional, when 2 capitals are used, the 1st represents the initial point and the 2nd the 
terminal point. The magnitude is the absolute value of the vector’s magnitude. When a 
vector’s tail is located at the origin it is called a position vector. 
 
Example:      
    
     Called: a  or A or AB or AB 
       Magnitude written: | AB | = 25 
 
 
 
 
     Called: Negative a, the vector that has the  
       same magnitude, but the direction is  
       opposite. 
       –a or –A or –AB 
       | a | = | –a | 
 
 
Adding vectors can be thought of as solving the long side of the triangle formed when 2 
vectors are placed initial to terminal side or finding the diagonal of a parallelogram 
formed by placing initial sides together. 
 
Example: V + U 
 
a)      b) 
 
 
 
 
 
 
The difference is found by adding the opposite of a vector. 
 
Example: V – U 
 
    then    therefore, 
 
 

A 

B 

45° 

25 mph 

B 

–a 

Initial side - tail 

Terminal side - tip 

V + U V + U U 

V 

U 
V 

V 

U –U 

–U V 
V – U 
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θ 
b 

a 

u 
(a, b) 

Finally, we can make some sense of vectors if we put them in our familiar coordinate 
system. When a vector is placed with its initial point at the origin it is called a position 
vector with its endpoint at (a, b). We write a position vector u, in the following way: 
 
    u  =  < a, b > 
 
where a & b are the horizontal and vertical components of the vector, respectively. The 
positive angle between the x-axis and the vector is the direction angle. 
 

The Position Vector:  u = < a, b > 
 
     The Magnitude of u: | u | = √a2  +  b2 

      
     tan θ =   b   , a ≠ 0  
        a 
     a = | u | cos θ & b = | u | sin θ 
 
 
Note:  Since the values of a and b are given as the magnitude times the sine or cosine 
values, another way of looking at the position vector is < | u | cos θ, | u | sin θ > 
 
*Just think of all the coordinates that we’ve done that have been proportional to the unit 
circle.  In the unit circle (cos θ, sin θ). 
 
Example: Find the magnitude and direction of u = <-5, 4> 
 
 
 
 
 
 
Now, more practice with the horizontal and vertical components. 
 
Example: If v has | v | = 14.5 and θ = 220°, find the horizontal and vertical  
  components of the position vector v 
 
 
 
 
 
 
Example: Write each vector in terms of < a, b > 
a) u     if     | u | = 8  &  θ = 135°   b) v     if     | v | = 4  &  θ = 270°  
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c) w     if     | w | = 10  &  θ = 340°  
 
 
 
 
 
Now let’s practice adding vectors. Since we deal with parallelograms when adding and 
subtracting vectors, you should know the following facts about parallelograms: 
 
  1) A parallelogram is a quadrilateral with 2 sets of parallel sides 
 
  2) Opposites sides and angles are equal 
 
  3) Adjacent angles are supplementary 
 
  4) The diagonals bisect each other, but don’t necessarily bisect the  
   angles 
 
Example: The vectors u & v are initial point to initial point.  If | u | = 32 & | v | = 48  
  and the angle between them is 76°, find the magnitude of the resultant  
  vector, w. 
 
 
 
 
 
 
Using geometry, the following properties of operations with vectors can easily be shown. 
The following is a summary of what we need to know. 
 
  1) <a, b> + <c, d>  =  < a + c, b + d> 
   Add “a” components & add “b” components 
 
  2) k • <a, b> = <k•a, k•b> 
   Multiplying by a scalar, multiplies each component by the scalar. 
 
  3) If a = <a, b> & –a = <–a, –b>  
   then <a, b> – <c, d> = <a, b> + –<c, d>  
   = <a, b> + <–c, –d> = <a – c, b – d> 
   From 1 & 2 above subtraction is the addition of an opposite. 
 
 
Example: Let u = <6, -3> and v = <–14, 8>.  Find 
a) u + v   b) –1/2 v   c) 5u  +  2v 
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A unit vector has magnitude 1. We have 2 important unit vectors i & j (not to be confused 
with the i & j of complex numbers) 
 
  i = < 1, 0 >   &   j = < 0, 1 > 
 
Every vector <a, b> can be expressed in terms of i & j in the following manner: 
 
    < a, b >  =  a i + b j 
 
since this means a< 1, 0 > + b< 0, 1 > 

which is equivalent to < a, 0 > + < 0, b > 

which is equivalent to  < a + 0 , 0 + b > or < a, b > 

 
The unit vector is important in applied sciences such as physics. 
 
Example: Give the position vector for 4i  +  -7j 
 
 
 
 
 
Example: Find a)  2a  b) 2a  +  3b c) b  –  3a for 
     a  =  –i  +  2j  &  b  =  i  –  j 
Write it in terms of both the position vector and as an expression in terms of i & j 
 
 
 
 
 
§9.2 Dot Products – Supplementary Stewart text 
Next, we will study another important application of vectors, the dot product. This is used 
to determine the angle between 2 vectors. It can help solve physics problems and derive 
geometric theorems. 
 

Dot Product 
 

u • v  =  a • c  +  b • d 
 
  The dot product of vectors u & v is found by multiplying their 
  “a” & “b” components and summing the products. 
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Properties of Dot Products 
  1) u • v = v • u 
   Dot products are commutative 
 
  2) u • (v + w) = u • v  +  u • w 
   Dot products are distributive 
 
  3) (u + v) • w = u • w  +  v • w 
   Dot products are commutative and distributive 
 
  4) (ku) • v = k(u • v) = u • (kv) 
   Multiplication by a scalar, is associative 
 
  5) 0 • u = 0 
   Multiplication property of zero 
 
  6) u • u = | u |2 
   Dot product of a vector with itself yields the magnitude squared 
 
The angle between 2 vectors is very important, as we have seen (as in u + v or u – v). 
Thus the next interpretation of the dot product is quite nice. Dugopoloski gives no 
explanation of this sort, but it is worth the time to look these over. 
 

Geometric Interpretation of the Dot Product 
 

     When the angle θ between   u  &  v   is in the interval [0, 180°], then 
 
    u • v  =  | u | | v | cos θ 
 
 
 
Example: To the nearest 10th of a degree, find the angle between  
   u = < 5, –12 >  &  v  =  < 4, 3 > 
 
 
 
 
 
Example: Find the angle between the vectors 2i  + j  and  –3i  +  j 
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One last note before we close. When 2 vectors are at right angles they are called 
orthogonal vectors. The dot product of orthogonal vectors is zero (since the cosine of 90° 
is zero). 
 
Example: Find the dot product of u = < 1 , 1 >  &  v  =  < –1 , 1 >.  What does this  
  mean? 
 
 
 
 
 
 
 
 
Example: Is the following pair of vectors orthogonal?  –4i  +  3j  &  8i  –  6j 
 
 
 
 
 
 
 
 
Applications of Vectors 
See Evergreen Trig page and look up 
Incline Plane Problem 
Work Problem 
Component Work Problem 
 
Resultant Force happens when two forces are acting on a single object with an angle 
between the application of each force. The resultant force can be described as the 
diagonal of the parallelogram created by the two forces. 
 
 
 
 
Here U & V are the two forces and V + U is representing the resultant force 
 
Method 1 of Finding Resultant Force & Angle 
1) Law of Cosines is used to find the magnitude of the resultant 
2) Law of Sines is used to find the angle of the resulting force 

V + U 
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Method 2 of Finding Resultant Force & Angle 
1) The component forms representing each vector must be found & then summed to 

find the component form of the resultant vector & finally the magnitude of that 
resultant vector can be calculated 

2) The angle of the resulting force can be found by tan-1 (b/a) 
 
Example:  
 
 
 
 
  #6 p. 296 Trigonometry, Dugopolski, 3rd Edition 
 
 
 
 
 
 
 
 
 
An inclined plane problem tells us about the force that is required to move an object up a 
ramp. To calculate the forces at work, we must take into account that the resultant force 
works perpendicularly to the inclined plane and therefore the component force up the 
ramp is the force with which we must push and the other is the force with which gravity 
is pulling.  
 
1) The weight of the object is the force with which gravity is pulling downward. 
2) The sine of angle the inclined plane makes with the ground is equivalent to the 

force divided by the weight. 
   sin θ =    force    
      weight 
 
*Remember that you may be asked to find the force, the weight or the angle of incline in 
one of these type of problems. 
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Example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  #10 p. 297 Trigonometry, Dugopolski, 3rd Edition 
 
 
 
 
 
 
Example:  
 
 
 
  #12 p. 297 Trigonometry, Dugopolski, 3rd edition 
 
 
 
 
 
 
 
Example: 
 
 
 
  #14 p. 297 Trigonometry, Dugopolski 3rd Edition 
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Navigation problems are a third type of problem that we will be dealing with in this 
sections. Below is the diagram that describes the elements in a navigation problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
p. 293 Trigonometry, Dugopolski, 3rd Edition 
 
Recall that bearing is the degrees from North in a clockwise direction. Heading due east 
is therefore a bearing of 90º. We will compute the drift angle with respect to the ground 
(east-west horizontal line) and then we will have to compute the bearing based upon that 
drift angle (add/subtract from 90º or 270º). 
 
The course & ground speed will be a vector in standard position.  
 
The heading and airspeed will give us angles and magnitude of a side of a triangle & 
the wind direction and speed (could be current speed/direction alternately)  will give us 
another side of the triangle. Note that wind speed is given in terms of the direction from 
which is comes and toward which it blows. 
 
Methodology of Solving Navigation Problems 
1) We will use the Law of Cosines to solve the airspeed. 
2) We will use the Law of Sines to solve the drift angle 
3) Compensate the course appropriately using the original heading & drift angle 
 
Example:  
 
 
 
#18 p. 297 Trigonometry, Dugopolski, 3rd Edition 
 


