Concepts on Test \#4 - Math 311 Spring 2012

Integer Addition
Same Signs
Add numbers (ignore signs) \& Keep common sign
Different Signs
Subtract Big \# - Small \# \& Keep sign of Big \#

Real Number Addition

Rules of Integer Addition Used on
Fractions
Decimals
Ex 1: Add
a) $-594+-783$
b) $-1 / 5+-5 / 7$
c) $-0.154+-9.84$
Ex 2: Add
a) $-57+192$
b) $1 \frac{2}{5}+-5 \frac{1}{3}$
c) $4.2+-1.97$

Integer Subtraction

Change Subtraction to Addition
Copy $1^{\text {st }} \#$ and add the opposite of the $2^{\text {nd }} \#$

Real Number Subtraction

Rules of Integer Subtaction Used on
Fractions
Decimals
Ex 3: Subtract
a) $-278-312$
b) $7 / 8-1 \frac{5}{12}$
c) $-14.87-(-209.6)$

Multiply/Divide Integers \& Real Numbers
$+\bullet+=+$ or $+\div+=+$

- • $=+$ or $-\div-=+$
$+\cdot-=-$ or $+\div-=-$
$-\cdot+=-$ or $-\div+=-$
Apply to Integers, Fractions \& Decimals
Ex 4: Divide
a) $-27 \div 5$
b) $-2 \frac{1}{3} \div-3$
c) $5.1 \div-0.3$

Solving Algebraic Equations Using Multiplication Property
Involving Whole Numbers
Involving Fractions
Involving Decimals
Involving Integers
Involving Real Numbers
Ex 5: Solve
a) $-5 x=-175$
b) $-2 / 3 x=17 / 15$
c) $0.02 \mathrm{x}=2.7$

Solving Algebraic Equations Using the Addition Property

Involving Whole Numbers
Involving Fractions
Involving Decimals
Involving Integers
Involving Real Numbers
Ex 6: Solve
a) $\mathrm{x}+54=-112$
b) $x+-5 / 7=2 \frac{6}{35}$
c) $\mathrm{x}-0.5=1.75$

Solving Algebraic Equations Using BOTH Addition \& Multiplication Property

Involving Whole Numbers
Involving Fractions
Involving Decimals
Involving Integers
Involving Real Numbers
Ex 7: Solve
a) $2 x+19=215$
b) $1 \frac{1}{2} \mathrm{x}-1=2 / 3$
c) $0.5 x+-1.28=-5.8$

Ex 8: Check your solution to Ex 7 c):
Check your solution to Ex 6 b):
$0.5 x+-1.28=-5.8$
$x+-5 / 7=26 / 35$

Order of Operations

PEMDAS
Parentheses - (), [], $\}, \| \mid, \sqrt{ }$, fraction bar
Exponents
Multiply \& Divide in left to right order
Add \& Subtract in left to right order
Ex 9: Simplify
a) $\sqrt{16+9} \div 5 \cdot(-2)+1$
b) $(2-5)^{3} \div 3-6$
c) $\frac{-|14-15|+|20 \div-5 \cdot 4|}{15 \div[(5-6) \cdot 3]+5}$

Properties of the Real Numbers

Commutative Property of Addition
This is how we add $5+2$ and get the same answer as $2+5$
Commutative Property of Mutliplication
This is how we multiply $7 \cdot 8$ and get the same answer as $8 \cdot 7$
Associative Property of Addition
This is how we add $(2+5)+8$ as opposed to $2+(5+8)$ and still get the same answer Associative Property of Multiplication
This is how we multiply $(2 \cdot 5) \cdot 8$ as opposed to $2 \cdot(5 \cdot 8)$ and still get the same answer Distributive Property
Multiplication Distributes over Addition 2 $(x+3)=2 \cdot x+2 \cdot 3$
Multiplication Property of Zero
Zero times anything is Zero
Division by Zero
Anything divided by zero is undefined

Zero divided by Anything

Zero divided by anything is zero
Inverse Property of Addition
This is how we achieve zero to make something go away in moving around equal sign $-2+2=0$ Inverse Property of Multiplication
This is how we achieve one to make a remove a numeric coefficient in an equation $5 \cdot 1 / 5=1$
Identity Property of Addition
This is how we make magic happen after using the addition property of equality $0+4=4$
Identity Property of Multiplication
This is how we make magic happen after using the multiplication property of equality $1 \cdot x=x$
Ex 10: Name the property
a) $7 x+3+3 x=7 x+3 x+3$
b) $2 \cdot 3 x=(2 \cdot 3) x$
c) $(7+3) x=7 x+3 x$
d) $\mathrm{a}\lceil 0$
e) $0 x=0$
f) $5+-5=0$

Expressions vs Equations

Simplify vs Solve
Simplify an algebraic expression
Solve an algebraic equation
Find a value that makes a truth value of "true" when each expression is evaluated
Ex 11: Which can be solved?
a) $2 x-5$
or
b) $2 x-5=1$

Evaluation of an Algebraic Expression

Put in values for variable(s)
Follow order of operations to get to a single number
Ex 12: Evaluate each of the following when $x=2, y=-3 \& z=-1$
a) $x \div z+(y+z) \quad$ b) $x / z+y / z \quad$ (use fractions to simplify)

Simplifying Algebraic Expressions

Distinguishing like terms
Combining like terms
Applying addition/subtraction of whole \#'s, integers, fractions, decimals \& real \#'s
Ex 13: Simplify
a) $2 x+5 x$
b) $2 / 3 x+5 \frac{1}{3}+2 \frac{1}{3} x-1 / 3$
c) $2(0.25 x+1)-0.75 x-0.2$
d) $5-2(x+3)-5 x$

Types of Polynomials

Monomial
Binomial
Trinomial
Ex 20: Give an example of a:
a) monomial
b) binomial
c) polynomial

Degrees of Terms \& Polynomials

Degree of a Term - Sum of all exponents in a term
Constant Degree is Zero
Used to Order a Polynomial - Highest to lowest degree to order
Degree of Polynomial - Degree of highest degreed term
Ex 17: What are the degrees of the terms in your answer to Ex 16 c)?
Ex. 18: Give the ordered polynomial for $\quad 5 x^{2}-7+2 x$
Ex 19: What is the degree of the polynomial $x^{2}-5 x^{3}+2$?

Adding \& Subtracting Polynomials

Combining like terms
Columns
Ex 14: Add/Subtract
a) $\left(2 x^{2}+3 x-5\right)+\left(3 x-5+2 x^{2}\right)$
b) $\left(5 x^{2}-7+2 x\right)-\left(x^{2}-5 x^{3}+2\right)$

Multiplying a Monomial x Monomial

Product Rule for Exponents
Copy like base \& add exponents
Apply Commutative \& Associative Property
Application of product rule
Ex 15: Multiply/Simplify
a) $x^{2} \cdot x^{5}$
b) $\left(2 x^{2} y\right)\left(3 x^{3} y^{2}\right)$
c) $(1 / 2 x y)\left(2 / 3 x^{2} y^{3}\right)$

Multiplying a Monomial x Polynomial

Distributive Property
Apply Monomial x Monomial
Ex 16: Multiply/Simplify
a) $5(x+5)$
b) $2 x\left(x^{2}+2 x-5\right)$
c) $3 x^{2} y\left(2 x^{2}-3 y+2 x y-5\right)$

