Review Final Sp. 2011 - To be given Mon., 5/23

Study all your old tests and go over the review sheets
Extra practice by doing the practice tests on my website (only after you've gone over your tests)
New Material Final Sp. 2011 - To be given Wed., 5/25
Fractions \& Mixed \#'s
Add \& Subtract \quad Ex. a) $\quad 217{ }^{1 / 36}-183{ }^{4} / 15$ b) $\quad 8 / 15-{ }^{11} / 15$ With \& Without LCD's

Find LCD's using prime factors
Building Higher Terms
Reducing as Necessary
Using GCF or Primes factors
Improper to Mixed Numbers as needed
Borrowing \& Carrying with Mixed \#'s
Multiply \& Divide
Ex.
a) $\quad 15 \frac{1}{2} \cdot \frac{2}{3}$
b) $\quad 7 / 8 \div 4 / 5$

Mixed \#'s MUST be improper fractions
Division is multiplication of dividend by reciprocal of divisor
Convert answers to mixed \#'s as needed
Canceling or reducing as needed
Remember divisibility rules from Ch. 1
Convert Fractions to Decimals Ex. Convert to a decimal a) $215 / 8$ b) ${ }^{27} / 50$
Divide numerator by denominator
c) $5 / 27$

Proper fractions will not be whole \#'s!
Decimal after whole \# \& add zeros in dividend
Put as many zeros as needed to get terminating decimal or see repeat or round
Never round unless asked
Use bar over repeating \# or \#'s to see the repeat
Order of Operations PEMDAS Ex. Simplify $2 \sqrt{1 / 4}+5 / 8 \div 1^{1 / 2}-(1 / 2)^{2}$
Solve Equations containing fractions Ex. Solve $\quad 1 / 2 \mathbf{x}-5=\frac{1}{\mathbf{3}}-\frac{1}{\mathbf{1}} \mathbf{8} \mathbf{x}$
Simplifying Expressions containing fractions
Ex. Simplify $\quad\left({ }^{2} / 3 x^{2}+1 / 2 x-1\right)-\left(1 / 5 x^{2}-3 / 4 x+{ }^{2} / 3\right)$
Comparison of fractions with $<$ or $>$ or $=$ Ex. Compare \qquad 3/5
Techniques: Visual (\# line, pictures), build higher terms, decimals, trick (cross multiply bottom to top)

Decimals

Read \& Write decimals in words Ex. Write the name for: 127.2891

Ex. Write the number:

two thousand, forty-five and two hundred eighty-seven ten-thousandths
Rounding a Decimal Ex. Round to the nearest 100 ${ }^{\text {th }}$: $\mathbf{5 8 9 . 8 9 7 8 1}$
Add \& Subtract \quad Ex. \quad a) $75.198+\mathbf{1 0 5 7 . 9} \quad$ b) $\mathbf{8 . 9} \mathbf{- 2 . 7 5 8}$
Line up the decimals (which lines up the place values)
Add zeros, especially in subtraction
Multiply Ex. a) $28.5 \times 0.00012 \quad$ b) (1.2)(0.09)
Ignore the decimals \& multiply \#'s

Count total decimals and put into the answer (right to left)
Divide \quad Ex. a) $\mathbf{2 7} \div \mathbf{1 5} \quad$ b) $\mathbf{2 . 5} \div \mathbf{5 0} \quad$ c) $\mathbf{1 . 0 2 5} \div \mathbf{0 . 5}$
Whole \div Whole (recall changing a fraction to a decimal)
Decimal \div Whole (same as whole by whole)
Whole or Decimal \div Decimal
Move decimal out of divisor, move same \# of places in dividend, place into quotient, don't touch decimal again
Convert Decimal to Fraction Ex. Change to a fraction $\mathbf{0 . 5 8}$
Read place values of decimals
Always lowest terms
Compare decimals with $<$ or $>$ or $=\quad$ Ex. Compare $\mathbf{2 . 8 7 1} \quad \mathbf{2 . 9 7 1}$
\# by \# comparison - find larger digit find larger number
Place decimals on a number line Ex. Draw a number line and place 1.1 correctly
Solve equations containing decimals \quad Ex. $\quad \mathbf{0 . 1}(\mathbf{x}+\mathbf{0 . 5})=\mathbf{1 . 2} \mathbf{- 0 . 1 x}$
Simplify expressions containing decimals

$$
\text { Ex. }\left(0.1 \mathrm{x}^{2}-2.52 \mathrm{x}+1.1\right)+\left(0.1-3.5 \mathrm{x}^{2}+0.4 \mathrm{x}\right)
$$

Order of operation PEMDAS Ex. $(\mathbf{1 . 2}+\mathbf{0 . 3})^{2} \div \mathbf{0 . 5}+\mathbf{0 . 5}$

Scientific Notation

Scientific Notation to Standard form (the way we see \#'s every day)
Ex. Put in standard form
a) 2.5×10^{4}
b) 0.025×10^{-2}

Understand multiplying by factors of 10 moves decimal to right (positive exponent on 10) Understand dividing by factors of 10 moves decimals to left

A negative exponent means take the reciprocal of the base
Remember that division is multiplication by a reciprocal
Negative Exponents REPRESENT division in by factors of 10 in scientific notation
Standard form to Scientific Notation

Ex. Write in Scientific Notation

a) 0.00035
b) $\mathbf{7 8 , 5 8 3 2}$

Put the decimal where you want it (one \# to left of it) \& count \# of places to get back to where it started

If a BIG \# (greater than 1) then exponent will be positive \#
If a LITTLE \# (between 0 and 1) then the exponent will be negative \#

Percentages

Definition
A part of 100
Convert a Decimal \rightarrow Ex. Write as a \% 0.375
Move decimal RIGHT 2 times
Convert a $\% \rightarrow$ Decimal Ex. Write as a decimal $\mathbf{2 5 \%}$
Move decimal LEFT 2 times
Convert $\% \rightarrow$ Fraction Ex. Write $\mathbf{1 5 \%}$ as a fraction
Definition as a part of 100 and reduce
Fraction to a \%
Ex. Write as a \%:
a) $2 / 3$
b) $3 / 25$

Build higher term to 100ths if possible OR
Convert fraction to a decimal \& decimal to \%

Percentage Problems

Ex. Write as an algebra problem \& solve
a) What is 25% of 15 ?
b) What number is 15% of 60 ?
c) $\quad 15$ is what percent of 45 ?

Algebraic Interpretation
\qquad is \qquad
Use context clues to fill in blanks
Convert to algebra problem since "of" means multiply and "is" means equals
Solve resulting equation remembering

1) Use decimal or fraction for the \%
2) If finding the $\%$ you will get a decimal \rightarrow convert it to a $\%$

As a proportion

$$
\frac{\%}{100}=\frac{\text { is }}{\text { of }}
$$

Solve by finding the cross products and setting equal creating an algebraic equation No special conversion is needed for $\%$ since a part of 100 is being used

