Concepts on Test \#3 - Math 311 Sp 2011

See all concepts on Test \#2 and extend each to integers

Adding \& Subtracting Integers

Addition Rules
If the signs are the SAME: Add the numbers \& keep the common sign

$$
\text { Ex. } \quad-5+-2=-(5+2)=-7
$$

If the signs are OPPOSITE: Subtract big minus small number \& keep big sign

$$
\text { Ex. } \quad-5+2=-(5-2)=-3
$$

Subtraction
Addition of the opposite: \quad Copy the $1^{\text {st }}$ number \& add the opposite of the second
Ex: $\quad-5-(-2)=-5+2$
Use Addition Rules

Multiplying Integers

$+\cdot+=+\quad-\cdot-=+\quad+\cdot-=-\quad-\cdot+=-$
Multiplying factors of 10 integers
Multiply \#'s \& add total \# of zeros:

$$
\text { Ex. } \quad \begin{aligned}
-5,000,000 \times 4,000 & \rightarrow-5 \times 4=-20 \text { and tack on } 9 \text { zeros }(000000000) \\
& =-20,000,000,000
\end{aligned}
$$

Dividing Integers

$+\div+=+\quad-\div-=+\quad+\div-=-\quad-\div+=-\quad$ (Same as Multiplication)
Division Rules
Any Number Divided by Itself is 1

$$
\begin{aligned}
& a \div a=1 \\
& 0 \div a=0 \quad a \neq 0 \\
& a \div 0=\text { undefined } \quad a \neq 0
\end{aligned}
$$

Exponents

Negative Inside parentheses vs Not in parentheses

$$
-\mathrm{a}^{2} \text { means"the opposite of } \mathrm{a}^{2 "} \quad \text { Ex. } \quad-2^{2}=-(2 \cdot 2)=-4
$$

$(-a)^{2}$ means "a negative number used as a factor 2 times" \quad Ex. $(-2)^{2}=-2 \cdot-2=4$
Negative to an EVEN Power is POSITIVE Ex. $\quad(-2)^{4}=-2 \cdot-2 \cdot-2 \cdot-2=+16$
Negative to an ODD Power is NEGATIVE Ex. $\quad(-2)^{3}=-2 \cdot-2 \cdot-2=-8$
Anything to the $1^{\text {st }}$ Power is the number Ex. $1057^{1}=1057$
Anything to the 0 Power is 1
Ex. $\quad(\sqrt{ } 144)^{0}=1$

Radicals

Basic Definition - \quad The answer is the number that when raised to the second power is what is under the radical symbol " $\sqrt{ }$ "

$$
\text { Ex. } \quad \sqrt{ } 16=4 \quad \text { because }(?)^{2}=16 \text { and } ?=4
$$

The Opposite of a Radical: $\quad-\sqrt{ } \mathrm{a}=-($ answer to $\sqrt{ } \mathrm{a}) \quad$ Ex. $\quad-\sqrt{ } 16=-4$
The Square Root of a Negative Number: $\quad \sqrt{ }-\mathrm{a}=$ No Real Solution since there is no number that Ex. $\sqrt{ }-4 \neq-2 \quad$ when multiplied by itself will equal a negative number.

The Cube Root of a Negative Number EXISTS

$$
\begin{aligned}
\sqrt[3]{2}^{-}-\mathrm{a}= & \text { a negative number!! } \quad \text { Since }-\cdot-\cdot-=- \\
& \text { Ex. } \sqrt[3]{ }-8=-2
\end{aligned}
$$

They are Parentheses!! Evaluate inside first then take the root.

$$
\text { Ex. } \quad \sqrt{ } 2+2=\sqrt{4}=2
$$

After radical is evaluated it is a parentheses!

$$
\text { Ex. }-2 \sqrt{ } 2+2=-\sqrt{ } 4=-2(2)=-4
$$

Opposites

Written like a negative -a means the opposite of a

$$
\text { Ex. } \quad-(-2) \text { is the opposite of }-2=2
$$

Absolute Values

Straight lines $\quad|\mathrm{a}|$ means the distance from zero (the number without a sign)

$$
\text { Ex. }|-2|=2
$$

They are parentheses!! Evaluate inside first, then take absolute value.

$$
\text { Ex. } \quad|-2-2|=|-2+-2|=|-(2+2)|=|-4|=4
$$

After absolute values are evaluated they are parentheses!

$$
\begin{array}{ll}
\text { Ex. } & 5|-2+-2|=5 \cdot|-2+-2|=5 \cdot|-4|=5 \cdot(4)=20 \\
& -|-2+-2|=-|-4|=-(4)=-4 \\
& \text { This } 2^{\text {nd }} \text { one reads the opposite of the absolute value of } \ldots
\end{array}
$$

Order of Operations

PEMDAS (or GEMDAS)
Don't forget that radicals and absolute values are special parentheses
Do the inside, evaluate and then replace with (); see examples above

Word Problems with Integers

Check book type problem (\#47\&48 p. 111; \#43 \& 44 p. 121)
Temperature Type ($\# 53 \& 54$ p. 111; \#53\&54\&59 p. 122-123)
Diving/Digging Type (\#55\&56 p. 112)
Average of Integers (Add all \#'s up \& divide by number of numbers; Golf Score Example)
Profit (Net Profit) $=$ Revenue $-\operatorname{Cost}(\# 9$ p. 146)
$\mathrm{D}=\mathrm{R} \cdot \mathrm{T}(\# 19,21 \& 23 \mathrm{p} .146)$

Solving Algebraic Equations

Addition: Add the opposite of the constant to both sides
Multiplication: Divide by numeric coefficient on both sides

Evaluation of Algebraic Expressions

Parentheses \rightarrow Insert Value \rightarrow Order of Operations Problem

$$
\begin{array}{ll}
\text { Ex. } & \text { Evaluate } \quad-x+-y^{2} \quad \text { for } x=-2 \text { and } y=-3 \\
& \rightarrow-(-2)+-(-3)^{2}=2+-(-3 \cdot-3)=2+-(9)=2+-9=-7
\end{array}
$$

Restrictions

What causes an expression to be undefined?

$$
\begin{array}{lll}
\text { Ex. } & \frac{5}{x+7} & x+7=0 \text { will cause it to be undefined (division by zero) } \\
& \text { so solve for } \mathrm{x} \& \text { get answer }
\end{array}
$$

when $\mathbf{x}=-7$ it will be undefined

Polynomials

Definitions: Monomial, Binomial, Polynomial, Trinomial, Term, Constant, Numeric Coeff.
Like Terms
Degree of a Term \& of a Polynomial
Adding Polynomials (combining like terms; simplifying algebraic expressions)

