Parabolas

Faces Up/Down

(Along the vertical axis)
Equation

$$
(x-h)^{2}=4 p(y-k)
$$

Faces Left/Right
(Along the horizontal axis)

Vertex

$$
(\mathrm{h}, \mathrm{k})
$$

$$
(\mathrm{h}, \mathrm{k})
$$

Axis of Symmetry

$$
\mathrm{x}=\mathrm{h}
$$

$$
\mathrm{y}=\mathrm{k}
$$

Directrix
$y=k-p$
$\mathrm{x}=\mathrm{h}-\mathrm{p}$
A line perpendicular to the axis of symmetry p units under/over or right/left of the vertex. This line does not cut the parabola.

Focus
(h, $k+p$)
(h+p,k)
Latus Rectum
$|4 p|$
| 4 p |
This is a line segment from one side of the parabola to the other through the focus. The distance from the focus to the parabola is $|2 p|$. This is also called the focal length of the parabola

p	$\mathrm{p}>0$ opens up	$\mathrm{p}>0$ opens right
$\mathrm{p}<0$ opens down	$\mathrm{p}<0$ opens left	

This is the distance from the focus to the vertex and from the vertex to the directrix

Ellipses

Major Axis is Horizontal

Major Axis is Vertical

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Note: $\quad \mathrm{a}>\mathrm{b}$; that's what makes the distinction between the a \& the b !
Center
(h, k)
(h, k)
Vertex
$(\mathrm{h}+\mathrm{a}, \mathrm{k}) \quad(\mathrm{h}-\mathrm{a}, \mathrm{k})$
(h, $a+k)$
(h, k-a)
Focus
$(\mathrm{c}+\mathrm{h}, \mathrm{k})$
(h-c, k)
(h, c +k)
(h, $\mathrm{k}-\mathrm{c}$)
$c^{2}=a^{2}-b^{2}$
Major Axis
2a
2a
This is a line segment from one vertex to the other through the foci.
Minor Axis
2b
2b
This is a line segment from one side of the ellipse to the other through the center.
Eccentricity
$e=c / a$
$e=c / a$
$0<\mathrm{e}<1$
*Closer to 0 is a more circle like

Hyperbolas

Opens Left \& Right

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

(h, k)

Opens Up \& Down

$\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$
Center
Vertices
$(h+a, k) \quad(h-a, k)$
(h, a+k)
(h, k)

Transverse Axis Horizontal: 2a
Vertical: 2a
A line between the vertices through the center
Asymptotes $\mathrm{y}-\mathrm{k}=\mathrm{b} / \mathrm{a}(\mathrm{x}-\mathrm{h})$ and $\mathrm{y}-\mathrm{k}=-\mathrm{b} / \mathrm{a}(\mathrm{x}-\mathrm{h}) \quad \mathrm{y}-\mathrm{k}=\mathrm{a} / \mathrm{b}(\mathrm{x}-\mathrm{h})$ and $\mathrm{y}-\mathrm{k}=-$ $\mathrm{a} / \mathrm{b}(\mathrm{x}-\mathrm{h})$
Foci
$(\mathrm{h}+\mathrm{c}, \mathrm{k}) \quad(\mathrm{h}-\mathrm{c}, \mathrm{k})$
(h, c+k)
(h, k-c)
$c^{2}=a^{2}+b^{2}$ in this case

Central Box
Between "parabolas"

Box thru vertices \& asymptote (a+h, b+k), (a+h, k-b), (h-a, k+b) (h-a, k-b)

Box thru vertices \& asymptote (b+h, $a+k),(b+h, k-a)$, (h-b, a+k), (h-b, k-a)

