Trig Test \#3 Concepts

Graphing Trig $\mathrm{F}(\mathrm{n})$ Inverses

$$
\sin ^{-1}(x), \cos ^{-1}(x), \tan ^{-1}(x)
$$

Domain \& Range of Inverses
Review from last test \& extend
Ex. $\sin ^{-1}(-\sqrt{3} / 2), \cos \left(\sin ^{-13} / 5\right)$ $\sin ^{-1}\left(\sin ^{5 \pi} / 6\right)$

Fundamental Identities \& Uses Write expression using sine \& cosine
Simplifying trig expressions
Verifying/Proving Identities
Addition \& Subtraction formulas
Use in finding exact values
Proving Co-Function Identities
Proving/Verifying Identities
Solving Equations
Double \& $1 / 2<$ Formulas
Use is finding exact values
Proving/Verifying Identities
Solving Equations
Product \leftrightarrows Sum Formulas
Use in rewriting
Use in solving equations

Trig Equations \& Their Solutions

Tricks:

1) Algebra like §7.4 \#9/37 (Ed 5/Ed6)
2) Identities to rewrite like §7.4 \#14/52 (Ed 5/Ed6)
3) Factoring\&Zero Factor Prop like §7.4 \#18/54 (Ed 5/Ed6)
4) Squaring \& Identities
*Careful w/ squaring \& check roots
like §7.4 \#47/§7.5 37 (Ed 5/Ed6)
5) $\mathrm{Dbl} \& 1 / 2 \angle$ Formulas like §7.4 \#61/§7.5 39 (Ed 5/Ed6)

Polar Coordinates \& Their Graphs Different ways to write same coord.

Polar \longleftrightarrow Rect. Coordinates

$\mathrm{x}=\mathrm{r} \cos \theta, \mathrm{y}=\mathrm{r} \sin \theta$
Substitute in $\mathrm{r} \& \theta$ and find value for $\mathrm{x} \& \mathrm{y}$
$\tan \theta=\mathrm{y} / \mathrm{x}, \mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}$
Substitute in $\mathrm{x} \& \mathrm{y}$ to find r
Substitute y \& $\mathrm{x} \&$ use knowledge of Δ 's to find θ (or use inverse)

Polar $\longleftrightarrow \rightarrow$ Rect. Equations

Tricks:

1) Direct Substitution

Like§8.1 \#42/44 (Ed 5/Ed 6)
2) Trig identities to simplify

Like §8.1\#46/48 (Ed 5/Ed 6)
3) Multiply by r

Like §8.1\#50/56 (Ed 5/Ed 6)
4) Square sides

Like §8.1\#59 (Ed 6)
5) More complex trig formulas

Like §8.1\#60/68 (Ed 5/Ed 6)
Like §8.2\#49/55 (Ed 5/Ed 6)
Graphs of Polar Equations
(Multiple Choice)
Think about equation \& pix produced Sine vs. Cosine \& Symmetry produced Circles $\quad r=a$ (center at zero)
$\mathrm{r}=2 \mathrm{a} \sin \theta$ (center at $|\mathrm{a}|,(\mathrm{a}, \pi / 2)$)
$\mathrm{r}=2 \mathrm{a} \cos \theta$
(center at $(\mathrm{a}, 0)$)
Spiral $\quad \mathrm{r}=\mathrm{a} \theta$
Straight Lines thru Origin $\theta=\mathrm{a}$
Cardioids $\quad \mathrm{r}=\mathrm{a}(1 \pm \cos \theta)$
$\mathrm{r}=\mathrm{a}(1 \pm \sin \theta)$
Roses $\quad n$-leaved n is odd
Limacon $\} r=\begin{aligned} & \text { 2n-leaved } n \text { is even } \\ & \sin n \theta \text { or } r=a \cos n \theta \\ & r=a \pm b \cos \theta\end{aligned}$
If $\mathrm{a}<\mathrm{b}$ then there is a loop
If $a=b$ then it is a Cardioid
If $a>b$ then dimpled
Lemniscates $\quad r^{2}=a^{2} \sin 2 \theta$
symmetric about $y=x$
$\mathrm{r}^{2}=\mathrm{a}^{2} \cos 2 \theta$
symmetric about the x -axis

Symmetry of Polar Graphs
About the Polar Axis
Test: θ vs $-\theta$ yield same r
About $\theta=\pi / 2$
Test: θ vs $\pi-\theta$ yield same r
About the Pole
Test: θ vs $\pi+\theta$ yield same r
Or rare instances r vs $-r$
Complex \#'s Graphed
Real Axis \& Imaginary Axis
Graphing Sets of Complex \#'s
Complex \#'s Absolute Value (Modulus) $|\mathrm{z}|=\sqrt{ } \mathrm{a}^{2}+\mathrm{b}^{2}$

Trig Form of a Complex \#

1) Graph complex to help find θ
2) Modulus called r
3) $\tan \theta=\mathrm{b} / \mathrm{a} \&$ use trig Δ knowledge
for finding θ in most cases
4) $\mathrm{z}=\mathrm{r}(\cos \theta+i \sin \theta)$

Multiplying \& Dividing Complex \#'s
Using Trig Form
Multiply:
Multiply moduli
Add arguments (the θ 's)
Divide:
Divide moduli
Subtract arguments (the θ 's)
DeMoivre's Theorem
What For: Raising trig form of a complex \# to the $\mathrm{n}^{\text {th }}$ power
How:
Modulus to $\mathrm{n}^{\text {th }}$ power " n " times argument (the θ)

Roots of Complex \#'s (in Trig Form)

1) There are $k=0,1,2, \ldots, n-1$ roots
2) Raise modulus to $1 / n$ power
3) For successive roots the argument changes as $\theta+2 \mathrm{k} \pi$
n
4) Graphing all " k " roots

Solving an Equation w/ Complex \#'s Applies $\mathrm{n}^{\text {th }}$ root

To STUDY, review your homework!!

