Test \#1b Concepts Review

Graphing Sinusoids

Sine, Cosine, Tangent $\}$ w/ translations
Cotangent, Secant, Cosecant $\}$ recognize \& graph basic
Inverse Sine, Cosine \& Tangent $\}$ recognize \& graph basic
Radian Measure
Degree \leftrightarrow Radians
$\theta=\mathrm{s} / \mathrm{r} \quad \& \quad \mathrm{~s}=\theta \mathrm{r}$

Arc Length Relationships

Area of Sector

$$
A=1 / 2 r^{2} \theta
$$

Angular Speed

$$
\omega=\theta^{\theta} / t
$$

Linear Speed

$$
\mathrm{v}=\mathrm{s} / \mathrm{t}=\mathrm{r} \omega
$$

Trig Ratio Reviewed

Definitions
In Terms of $\mathrm{x}, \mathrm{y} \& \mathrm{r}$

$$
\checkmark \frac{y}{r}, \frac{x}{r}, \frac{y}{x}, \frac{x}{y}, \frac{r}{x}, \frac{r}{y}
$$

In Terms of opposite, adjacent $\&$ hypotenuse

$$
\checkmark \frac{\text { opp }}{\text { hyp }}, \frac{\text { adj }}{\text { hyp }}, \frac{\text { opp }}{\text { adj }}, \frac{\text { adj }}{\text { opp }}, \frac{\text { hyp }}{\text { adj }}, \frac{\text { hyp }}{\text { opp }}
$$

Reciprocal Identities

$$
\frac{1}{\csc }, \frac{1}{\sec }, \frac{1}{\cot }, \frac{1}{\tan }, \frac{1}{\cos }, \frac{1}{\sin }
$$

Quotient Identities (your book makes a distinction here with reciprocal identities)

$$
\underline{\sin t}=\tan \mathrm{t}, \underline{\cos \mathrm{t}}=\cot \mathrm{t}
$$

$$
\cos t \quad \sin t
$$

Signs in 4 Quadrants
All Students Take Calculus to remember which positive
$\mathrm{QI}(+,+), \mathrm{QII}(-,+), \mathrm{QIII}(-,-), \mathrm{QIV}(+,-)$ and therefore in QI all ${ }^{+} /+=+$, in QII anything involving y will be negative and while all else will be positive (see def. in terms of $\mathrm{x}, \mathrm{y} \& \mathrm{r}$), in QIII anything involving x or y will be negative \& only those involving both x $\& y$ will be positive, in QIV anything involving y will be negative

Ratios of 2 Special Right Triangles
30/60/90 ratio of sides $1: \sqrt{3}: 2$
45/45/90 ratio of sides $1: 1: \sqrt{ } 2$
sin, cos, tan, cot, sec, csc in terms of opp/hyp/adj using ratios
Pythagorean Identities
$\sin ^{2} \mathrm{t}+\cos ^{2} \mathrm{t}=1, \tan ^{2} \mathrm{t}+1=\sec ^{2} \mathrm{t}, 1+\cot ^{2} \mathrm{t}=\csc ^{2} \mathrm{t}$

Solving Triangles

By Methods of
Trig Ratios to get exact values (no calculator/approximation)
Pythagorean Identities to get exact values (no calculator/approximation)
Inverse $f(n)$ to get the angles based on known exact ratios
Also to get approximate values (calculator exercises)
Using each of the following in assisting
Reference Angles
Coterminal Angles
Sign Information from quadrants
Solving Triangles that ARE NOT right Δ 's
Law of Sines
Case 1: ASA or SAA (2 angles \& side included or not)
Case 2: SSA - the ambiguous case
If $\sin \theta>1$ then DNE
If $\sin \theta<1$ then be sure to check $180-\theta$
Law of Cosines
Case 3: SAS (included angle between 2 sides)
Case 4: SSS
No Ambiguity in Law of Cosines!

Heron's Formula for Oblique Δ

$\mathrm{A}=\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c}) \quad \text { where } \mathrm{s}={ }^{1} / 2(\mathrm{a}+\mathrm{b}+\mathrm{c}) \text { called the half-perimeter }}$
Extras Related to Solving Triangles
Bearing
Angles of Elevation

To Prepare for Test
From Edition 6
Do Ch. 6 Test on p. 487 (\#23 \& 24 have no comp in Ed 5) \& Ch 6 Review on p. 483
From Edition 5
Do Ch. 6 Test on p. 520 \& Review on p. 516
Do Ch. 7 Test p. 574 \#8 \& 11
Do Ch. 7 Review p. 572 \#65, 66, 69, 70 \& \#73-76all
In Addition Ed. 6 asks to solve triangles with the following:
\#73 in ed 6 p. $486 \quad$ Find A when $\mathrm{a}=23, \mathrm{C}=25^{\circ}, \mathrm{c}=12$
\#74 in ed 6 p. $486 \quad$ Find A when $a=4, C=80^{\circ}, \mathrm{c}=5$
\#75 in ed 6 p. $486 \quad$ Find B when $b=120, \mathrm{a}=85, \mathrm{c}=100$
\#76 in ed 6 p. 486
\#17 in ed 6 p. 487
\#18 in ed 6 p. 487
Find B when $\mathrm{C}=10^{\circ}, \mathrm{c}=3, \mathrm{a}=5$
Find C when $\mathrm{a}=6, \mathrm{~b}=8, \mathrm{c}=9$
Find C when $\mathrm{B}=75^{\circ}, \mathrm{a}=7, \mathrm{c}=5$
From Ch. 5 make sure you can graph still!!

