Name: \qquad

1. Solve the system of linear inequalities by graphing.

Use either substitution or elimination to find the point of intersection of the boundary lines. Work must be shown and be valid in yielding the point.

$$
\begin{aligned}
& x \geq 0 \\
& y \geq 0 \\
& x+2 y \leq 6 \\
& -5 x+y<5
\end{aligned}
$$

3. Using long division, find the quotient

$$
\left(4 x^{3}-5 x\right) \div(2 x-1)
$$

4. Using simplify the following
a) $(\mathrm{f}+\mathrm{g})(\mathrm{x})$
b) $\quad \mathrm{g}(-1)$
c) $\quad(\mathrm{f} \cdot \mathrm{g})(-1)$
$\mathrm{f}(\mathrm{x})=\mathrm{x}+2, \quad \mathrm{~g}(\mathrm{x})=3 \mathrm{x}^{2}-\mathrm{x}-4$
5. Factor each of the following completely
a) $6 x^{3} y^{2}-2 x^{3} z-9 y^{2}+3 z$
b) $x^{2}+16$
c) $\quad 4 x^{2}-8 x-6$
d) $8 x^{3}-27$
e) $2 x^{3}+54$
f) $16 x^{2}-40 x y+25 y^{2}$
g) $\quad x^{2}+4 x y+4 y^{2}-16$
h) $(x+1)^{2}+3(x+1)-40$
6. Find the determinant of the following matrix.

$$
\left[\begin{array}{rrr}
1 & -3 & 4 \\
4 & 1 & 1 \\
-2 & -3 & -5
\end{array}\right]
$$

7. Solve the following using Gaussian Elimination:

$$
\begin{aligned}
& 2 x+3 y=7 \\
& 5 x-4 y=9
\end{aligned}
$$

8. Solve the system of equations using any method. To receive any credit this must be done showing all work and valid methods of substitution, elimination or matrices.

$$
3 x-5 y+2 z=8 \text { and }-x-y-z=-3 \text { and } 3 x-2 y+4 z=10
$$

9. Describe, in slope-intercept form (where possible) for the line described by the given scenario.
a) Parallel to the line $2 x+3 y=6$ through $(0,5)$
b) Through the points $(5,7)$ and $(6,7)$
c) Perpendicular to the line $y=5 / 7 x+9$ through the point $(-1 / 2,3 / 4)$
10. For the following circle the most appropriate answer: $\frac{-3|3-18| \div 9+2}{5+2[-6}$

$$
5+2[-6-(-2)]+-2^{2}
$$

11. Simplify. Leave no negative exponents.
a) $\quad\left(7 x^{2} y^{3}\right)\left(2 x^{-3} y\right)$
b) $\quad\left(-5 x^{3} y\right)^{3}$
c) $7 x^{0}-\left(6 x^{2}\right)^{0}$
d) $\frac{3 x^{3} y}{18 x^{5} y^{-3}}$
12. Solve each of the following and give the solution in interval notation.
a) $|x-6|+7>5$
b) $\quad|x+5|=|2 x-1|$
c) $\quad\left|\frac{5 x-7}{2}\right|-1 \leq 3$
e) $\quad|x-5| \leq-1$
13. You need to show the complete solution to the following problem and then put the solution in interval notation.
14. Solve each equation.
a) $5 x-3(x-7)=7(x+3)$
b) $3(x-5)=5(x+2)-2 x$
c) $1 / 3 \mathrm{x}-1 / 15(\mathrm{x}-7)=7\left({ }^{1} / 15 \mathrm{x}+4 / 15\right)$
15. Correctly simplify: $\quad 1 / 4 x^{2}-2 / 3\left(1 / 2 x^{2}-2 / 3 x\right)-1$
16. Which is most likely the graph of $y=-x^{2}+1$
a)

b)

d)

17. Which is most likely the graph of
$y=|x|-2$
b)

c)

d)

18. Which is most likely the graph of
$y=-\sqrt{x}-3$
a)

b)

d)

19. Circle the correct answer in standard notation [the answers follow each part as i), ii), etc.]:
a) $\quad 1.02 \times 10^{-4}$
b) $\quad-1.25 \times 10^{6}$
20. Write in correct scientific notation:
a) $\quad-0.0552$
b) $9,250,000$
21. Multiply using exponents rules \& write in correct scientific notation. Do not multiply in standard form.
$\left(1.2 \times 10^{7}\right)\left(9 \times 10^{-2}\right)$
22. Add the following using scientific notation. Do not change to standard form and then add. I must see the correct manipulations of scientific notation for the sum.

$$
\left(2.5 \times 10^{8}\right)+\left(1.1 \times 10^{6}\right)
$$

24. State whether the following is or is not a function (state reasons).

Give the domain and range of each.
a) $\{(0,2),(5,2),(3,2)\}$
b) $\quad f(x)=3 x^{3}+2$
c)

25. How many liters of a 60% hydrogen peroxide solution must be mixed with 60 liters of a 21% hydrogen peroxide solution to obtain a 50% solution? Fill in the following table completely and write the equation based upon the table that could be used to solve. Do not solve.

Type	Volume (liters)	$\%$ of hydrogen peroxide	Pure hydrogen peroxide
Weak			
Strong		60%	
Mix			

