New Material Final

Chapter 7

Simplifying Radical Expressions
Adding Radical Expressions
Multiplying Radical Expressions
Dividing Rational Expressions
Rationalizing
Complex Numbers
a + bi form
adding/subtracting/multiplying \& dividing
rationalizing
Powers of i
Solving equations Containing Radicals
Only 1 radical
Two or more plus other terms

Chapter 8

Square Root Property to solve a quadratic
Completing the Square to solve a quadratic
Quadratic Formula to solve a quadratic
Parabolas
Vertex Form
3 Ways to find the vertex
vertex form \& 2 sets of formulas
Maximums \& Minimums
Domains \& Ranges
Increasing \& Decreasing
Y \& X-intercepts
Line of symmetry
Solving Equations Using Quadratic Form
Using Quadratic Equations to Solve Application Problems

Chapter 9

One-to-One Functions
Inverse of a Function
Finding from Ordered Pairs, Equation \& Visually
Exponential \& Logarithmic Functions
Graphs -- Graphing Specific functions \& translations
Domains \& Ranges
Transcendental Functions that are inverses of one another $a^{x}=y$ therefore $\log _{a} y=x$ or $\log _{a} x=y$ therefore $a^{y}=x$
Common Log - base 10 \& Natural Log (ln) - base "e"
Values of logs w/ Calculator
Base Change Formula: $\quad \log _{\mathrm{a}} \mathrm{b}={ }^{(\log \mathrm{b})} /(\log \mathrm{a})$ or ${ }^{(\ln \mathrm{b})} /(\ln \mathrm{a})$
Properties of Exponential \& Log F(n)
If $\mathrm{a}^{\mathrm{x}}=\mathrm{a}^{\mathrm{y}}$, then $\mathrm{x}=\mathrm{y}$ \& If $\log _{\mathrm{a}} \mathrm{x}=\log _{\mathrm{a}} \mathrm{y}$, then $\mathrm{x}=\mathrm{y}$
If $\mathrm{a}^{\log a(x)}$, then $\mathrm{x} \&$ If $\log _{\mathrm{a}} \mathrm{a}^{\mathrm{x}}$, then x
Condensing \& Expanding Using Product, Quotient \& Power Rules for Logs
$\log _{a} x+\log _{a} y=\log _{a} x y, \quad \log _{a} x-\log _{a} y=\log _{a} x / y, \quad y \log _{a} x=\log _{a} x^{y}$
Solving Log \& Exponential Equations
Using properties above

