Test \#1 Concepts Review: Ch. 1

Set Notation (§1.1)

Roster Form - List Finite or describable infinite

$$
\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \ldots\}
$$

Set Builder - Describes infinite sets

$$
\{x \mid x \in I,-1<x \leq 5\}
$$

Important Sets of Numbers ($\mathbf{\$ 1 . 1}$)
$\mathbb{R} \rightarrow$ Real - Rational \& Irrational \#'s
$\mathrm{Q} \rightarrow$ Rational - Described by ${ }^{\mathrm{p}} / \mathrm{q}$ where $\mathrm{q} \neq 0$
$\mathrm{H} \rightarrow$ Irrational - Mostly $\sqrt{ }, \pi \&$ e (non-repeating \& non-terminating decimals)
$\mathrm{I} \rightarrow$ Integers - Positive, Negative \& Zero
$\mathrm{W} \rightarrow$ Whole \#'s - Includes zero
$\mathrm{N} \rightarrow$ Natural/Counting \#'s - No Zero $\& \geq 1$

Subsets (§1.1)

Part of another set
Relate Set of \#'s to one another in this way
Notation for - \subseteq

Intersection \& Union (§1.1)

\cap - Intersection (in both)
\cup - Union (includes all)
\{\} or ϕ - Empty or null set
Graphing \& Using Roster \& Set Builder Notation

Graphing on Number Line (§1.1)

Points - Use a solid dot \& label
Inequalities

$$
\text { Endpoints - Brackets (solid dot) for inclusion (} \geq \text { or } \leq \text {) }
$$

Parentheses (open circle) for not included ($<$ or $>$)
Compound Inequalities - When standard form (small \# $<\mathrm{x}<$ large \#) endpoints and everything in between with a line between endpoints
Comparing $\mathbb{R}(\S 1.1, \S 1.2)$
Inequality Symbols $->$ Greater Than, \geq Greater Than or Equal To $<$ Less Than, \leq Less Than or Equal To
Consider \# Line When Ordering
Absolute Values \& Opposites
Fractions \& Decimals

Properties of \mathbb{R} (§1.2)

Multiplication:

Associative	$a(b \bullet c)=(a \bullet b) c$
Commutative	$a \bullet b=b \bullet c$
Identity	$a \cdot 1=a$
Inverse	$a \cdot 1 / a=1$

Addition:

Associative	$a+(b+c)=(a+b)+c$
Commutative	$a+b=b+c$
Identity	$a+0=a$
Inverse	$a+-a=0$

Subtraction \& Division have no such properties
Subtraction is addition of the inverse (opposite)

Properties of $\mathbb{R}(\S 1.2)$

Division is multiplication by the inverse (reciprocal)
Properties of Zero: Multiplication $\quad \mathrm{a} \bullet 0=0$
Division by Zero $\quad \mathrm{a} / 0=$ undefined (nothing else accepted) Zero \div Anything $\quad 0 / a=$ Zero
Distributive Prop. $\quad a(b+c)=a b+a c$

Absolute Value (§1.2)

Distance (\therefore no sign) from zero regardless of direction (sign)
Simplifying/Evaluating

Opposite (§1.2)

Same number, opposite sign
Simplifying/Evaluating
Real Number (Integer) Operations (§1.2)
Subtraction redefined (see above; must be able to show subtraction as addition)
Addition
Same sign - Add \#'s \& keep like sign
Opposite Sign - Subtract \& keep sign of larger
Mult/Division
$+\bullet+=+\quad-\bullet-=+$
$+\bullet$ - = - \quad •+ = -
All operations using fractions, mixed numbers and decimals (w/out calculator)
Order of Operations (§1.1, §1.2)
PEMDAS
Multiplication \& Division Left to Right order
Addition \& Subtraction Left to Right order
Including Absolute Values, Fractions, Decimals
Denominator ends up as zero - UNDEFINED) Must work the problems in their entirety,
Numerator ends up as zero -- ZERO \quad regardless of final solution.

Evaluation (§1.1)

Parentheses for variables \& plug in
Use order of operations (see above)

Roots \& Radicals (§1.2 \& §7.2)

$\sqrt[n]{a}=b \quad b$ used as a factor \mathbf{n} times equals \mathbf{a}
$a^{1 / n}=b$
same as above; another way to write root
Negative \# to odd exponent is negative $\}$ Neg under odd index is OK, Neg under even
Negative \# to even exponent is positive $\}$ index is No \mathbf{R} solution
Even Index, Radicand can't be negative or No Real Solution
Odd Index, Radicand is negative, Root is Negative
$-\mathrm{a}^{\mathrm{n}} \neq(-\mathrm{a})^{\mathrm{n}} \quad$ Example: $\quad-2^{2}=-(2 \cdot 2)=-4$ while $(-2)^{2}=-2 \cdot-2=4$

Translation of Mathematical \& Algebraic Expression and Algebraic Equations (§1.1)

Know words for operators
Addition: sum, total, plus, increased by, added to, greater than, years older than
Subtraction: subtract, less, difference of, decreased by, take away, subtracted from, years younger than, less than
Multiplication: multiply, product, twice, times, at, of, repeated addition

Translation of Mathematical \& Algebraic Expression and Algebraic Equations (§1.1)
Division: divided by, ratio, quotient, divide
Exponents: squared, cubed, raised to the power of (or a portion of this)
Equals: any form of "to be" (is, was, were, etc.), yields, equals
Parentheses: 4 phrasings
Define variable if used
Simplifying Algebraic Expressions (§1.2)
Vocabulary Associated With
Term (like vs unlike meaning), Constant, Variable, Numeric Coefficient
Can't be solved
Can't be cleared
Use distributive property
Combine like terms (use skills with fractions, decimals, mixed \#'s, integers)
Rectangular Coordinate System \& Graphing (§1.3)
Plotting \& Labeling Ordered Pairs \& Quadrant Information
Linear Equations in 2 Variables
Plot by plug \& chug (finding solutions)
Non-Linear Equations
$2^{\text {nd }}$ Degree Equations/Quadratic
Recognize: Shape, Up/Down, Vertex, Symmetry
Absolute Value
Recognize: Shape, Up/Down, Vertex, Symmetry

Solving Equations (§1.4)

Clearing of Fractions \& Decimals (not solving, just clearing)
Know how to properly do a check
Solving using distributive prop., simplification, add. prop. \& mult. prop.
Give solution set as $x=\#$ or $\{\#\}$ or Null Set or All Reals
Know the indicators for Identities \& Contradictions \& Solutions as a Result
Identity Indicator is \#1 = \#1 and the solution is All Reals
Contradiction Indicator is \#1=\#2 and the solution is Null Set

Word Problems (§1.5)

Know how to show setup!!
Always give units with answer
Linear Equation Problems
Total Cost = baseline + Cost per Use
Percent Increase/Decrease
Solving Equations for 1 Variable (§1.5)
Focus on the variable of interest
Simplify, Addition Property, Multiplication Property

Exponent Rules (§1.2 \& §1.6)

Definition

$$
\mathrm{a}^{\mathrm{r}}=\mathrm{a} \cdot \mathrm{a} \cdot \mathrm{a} \ldots \bullet \mathrm{a}
$$

Difference between $-\mathrm{a}^{\mathrm{r}} \&(-\mathrm{a})^{\mathrm{r}}$
Negative Exponent
$a^{-r}=1 / a^{r}$
Zero Exponent
$a^{0}=1$
Product Rule
$a^{r} a^{s}=a^{r+s}$
Quotient Rule
$a^{r} / a^{s}=a^{r-s}$
Power Rules
$\left(a^{r}\right)^{s}=a^{r . S}$
$(a b)^{r}=a^{r} b^{r}$
$(a / b)^{r}=a^{r} / b^{r}$

Scientific Notation (§1.7)

Standard Form to Scientific Notation
Correct Sci Note: 1 \# to left of decimal x factor of 10
Negative exponents for \#'s <1 and Positive exponents for \#'s >1
Scientific Notation to Standard Form
As we usually see \#'s written
Multiplying \& Dividing Using Exponent Rules
Make sure end in CORRECT SCI NOTE
Add/Subtract Sci Note
Key is same factor of 10
Functions (§2.1)
F(n) vs. Relation
Domains \& Ranges
Evaluation using $\mathrm{f}(\mathrm{x})$ notation:
Find $g(2)$

