Test \#4 Concepts (Ch. 4, Ch. 5.5-5.7, Ch. 6)

Solving System of Linear Inequalities w/ Absolute Values Included (§4.4)

Graph each inequality
Make sure absolute values are 2 parts
$<$ or \leq is intersection $\&>$ or \geq is union
Shade overlap
Know how to find intersection of boundary lines

Solving equations \& Inequalities w/ Absolute Values (§4.3)

Always 2 parts!

Get absolute value inequality number \& split into 2 parts using endpoint \& opposite
Example: $2|x+3|-5>3$
Step 1: $2|\mathrm{x}+3|>8$ then $|\mathrm{x}+3|>4 \quad$ Step 2: $\mathrm{x}+3<-4$ or $\mathrm{x}+3>4 \quad$ Step 3: Solve both parts
$<$ or \leq is intersection $\&>$ or \geq is union
Graph, Interval \& Set Builder Notation of Solution

Factoring

Previous Strategies

- GCF (§5.3)
- Only Factor Method
- As a first step
- By Grouping (§5.3)
- Trinomials (§5.4-5.5)
- Perfect Square Trinomial (5.5)
- Leading Coefficient 1 (5.4)
- Leading Coefficient not 1 (5.4)
$\checkmark \quad$ By Grouping(5.4)
- By Substitution
$\checkmark \quad$ To factor higher degree than second
$\checkmark \quad$ To factor with quadratic form
- Binomials (§5.5)
- Difference of 2 Perfect Squares $a^{2}-b^{2}=\left(\right.$ root of $1^{\text {st }}+\operatorname{root}$ of $\left.2^{\text {nd }}\right)\left(\right.$ root of $1^{\text {st }}-\operatorname{root}$ of $\left.2^{\text {nd }}\right)$
- Sum of 2 Perfect Squares - Prime
- Sum of Cubes $a^{3}+b^{3} \rightarrow a$ is cube root of $a^{3} \& b$ is cube root of $b^{3}:(a+b)\left(a^{2}-a b+b^{2}\right)$
- Difference of Cubes $a^{3}-b^{3} \rightarrow a$ is cube root of $a^{3} \& b$ is cube root of $b^{3}:(a-b)\left(a^{2}+a b+b^{2}\right)$
- New Strategies (§5.5)
- Perfect Square Trinomial Minus Perfect Square $a^{2} \pm 2 a b+b^{2}-c^{2}$
\checkmark Two steps: Step1: Factor Perfect Square Trinomial into binomial squared
Step 2: Use substitution to factor difference of Squares

Solving Polynomial Equations (§5.7\& §8.2)

- Zero Factor Property
- Standard Form, Factor, Set Factors Containing Variable $=0$ \& solve
- X-Intercepts of a $2^{\text {nd }} \& 3^{\text {rd }}$ Degree Equations
- Application of solving quadratic. Roots are x -coordinate for x -intercepts
- Pythagorean Theorem
- $a^{2}+b^{2}=c^{2}$ is relationship between the lengths of the sides of a right triangle
- use methods of solving quadratic equations to find solutions for application problems
- remember extraneous roots (solutions that aren't valid) arise from such problems
- Use of Function Notation
- If $f(x)$ is a polynomial, $P(x)$, then finding the values of x that make $P(x)=\#$ is solving a quadratic equation
- Parabolic Motion
- An object's motion when it is thrown, launched, etc. can be described using a quadratic.
- The height at time t is what the equation describes.
- Setting the function equal to zero, finding $\mathrm{P}(\mathrm{x})=0$, finds the time it will take for the object to reach the ground.
- If asked to find time to reach the ground solve a quadratic!

Rational Expressions \& Equations (Ch. 6)

- Finding the Domain of a Rational Expression (§6.1)
- Also called: Finding restrictions or finding the zeros or finding where it is undefined
- Set denominator equal to zero, solve equation $\&$ eliminate the values from the domain
- \quad Simplifying a Rational Expression (§6.1)
- NO CANCELING in ADDITION!! Factor before canceling!
- Factor numerator \& denominator \& cancel
$\checkmark \quad$ Don't forget GCF is factoring too!
$\checkmark \quad$ See Factoring Strategies in Ch. 5
- Multiply/Divide Rational Expressions (§6.1)
- Factor and cancel in multiplication
- If division make sure to take reciprocal of divisor ($2^{\text {nd }}$ poly.) and multiply by dividend ($1^{\text {st }}$ poly.) then multiply
- Adding/Subtracting Rational Expressions (§6.2)
- Find an LCD
\checkmark Factor denominators, "unique factors" to HIGHEST exponent (not sum of all exponents)
- Build higher terms
\checkmark Multiply numerator by what's missing - EXPAND it out
- Distribute subtraction across polynomial of subtrahend (poly. after subtraction symbol)
- Add numerators, and carry along LCD
- Factor numerator \& cancel if possible to simplify
- Complex Fractions (§6.3)
- Find LCD of ALL denominators of all terms in the complex fraction
- Multiply all terms by LCD, CANCEL \& expand is needed, then see steps for simplifying a rational expression
- Division of Polynomials ($\S 6.4 \& \S 6.5)$
- Dividing by a MONOMIAL - NOT using long division; break into terms, with each term in num. over denom.
- Dividing by Polynomial
\checkmark Long Division
- Like \#'s - Divide, multiply, subtract, bring down
- Be careful of the binomial \& subtraction
- Write remainders over divisor \& ADD them to quotient
$\checkmark \quad$ Synthetic Division
- Only when divisor is $1^{\text {st }}$ degree $\mathrm{w} /$ no leading coefficient $(\mathrm{x}-\mathrm{c})$
- Divisor must read: x - c
- $\quad \mathrm{c} \mid \mathrm{abc} \mathrm{c}$ e and then bring down a and multiply by c to go under $\mathrm{b}, \&$ continue the pattern
- Answer is one degree less than original terms
- Remainder Theorem (§6.5)
- If $\mathrm{P}(\mathrm{x})$ is a polynomial, then the remainder of $\mathrm{P}(\mathrm{x}) \div(\mathrm{x}-\mathrm{c})$ is the same as $\mathrm{P}(\mathrm{c})$
- Solving Equations (§6.6)
- Use LCD of denominators to clear

Find restrictions
2 types of equations can result from clearing - Linear vs Quadratic (or higher)
Decide how to solve and solve
Always compare solutions to restrictions before answering

- Solving Equations for a Single Variable (§6.7)
- Variables in denominator this time around
$\checkmark \quad$ Clear $1^{\text {st }} \&$ proceed as in previous chapters
$\checkmark \quad$ Factoring may occur too, if YOUR variable is in TWO terms, group those terms \& factor to solve
- Variation Problems (§6.8)
- Direct, Indirect/Inverse, Joint \& Compound
- Modeling using variation

This is a maybe depending on our coverage today, 4/19

- Applications (§6.7)

Translation problems AGAIN (just with reciprocals)

- Distance problems AGAIN
- Work Problems (just like distance)
$\checkmark \quad \mathrm{R}=1 /$ totat time \& equation $\mathrm{W}=\mathrm{RT}$,
- Time is individual
\checkmark Solve with $\mathrm{W}_{1}+\mathrm{W}_{2}=1$, since work contributed by each individual gets the WHOLE job done

