Solving System of Linear Inequalities w/ Absolute Values Included (§4.4)

Graph each inequality

Make sure absolute values are 2 parts $< or \le is$ intersection $\& > or \ge is$ union Shade overlap Know how to find intersection of boundary lines

Solving equations & Inequalities w/ Absolute Values (§4.3)

Always 2 parts!

 $\begin{array}{ll} \mbox{Get absolute value inequality number \& split into 2 parts using endpoint \& opposite \\ \mbox{Example: } 2|x+3|-5>3 \\ \mbox{Step 1: } 2|x+3|>8 \mbox{ then } |x+3|>4 \\ \mbox{Step 2: } x+3<-4 \mbox{ or } x+3>4 \\ \mbox{Step 3: Solve both parts} \\ \mbox{< or \le is intersection \& > or \ge is union} \end{array}$

Graph, Interval & Set Builder Notation of Solution

Factoring

Previous Strategies

- GCF (§5.3)
 - Only Factor Method
 - As a first step
- By Grouping (§5.3)
- Trinomials (§5.4-5.5)
 - Perfect Square Trinomial (5.5)
 - Leading Coefficient 1 (5.4)
 - Leading Coefficient not 1 (5.4)
 - ✓ By Grouping(5.4)
 - By Substitution
 - \checkmark To factor higher degree than second
 - \checkmark To factor with quadratic form
- Binomials (§5.5)
 - Difference of 2 Perfect Squares $a^2 b^2 = (root of 1^{st} + root of 2^{nd})(root of 1^{st} root of 2^{nd})$
 - Sum of 2 Perfect Squares Prime
- Sum of Cubes $a^3 + b^3 \rightarrow a$ is cube root of a^3 & b is cube root of b^3 : $(a + b)(a^2 ab + b^2)$
- Difference of Cubes $a^3 b^3 \rightarrow a$ is cube root of a^3 & b is cube root of b^3 : $(a b)(a^2 + ab + b^2)$
- New Strategies (§5.5)
 - Perfect Square Trinomial Minus Perfect Square $a^2 \pm 2ab + b^2 c^2$
 - ✓ Two steps: Step1: Factor Perfect Square Trinomial into binomial squared
 - Step 2: Use substitution to factor difference of Squares

Solving Polynomial Equations (§5.7& §8.2)

- Zero Factor Property
 - \circ Standard Form, Factor, Set Factors Containing Variable = 0 & solve
- X-Intercepts of a $2^{nd} \& 3^{rd}$ Degree Equations
 - Application of solving quadratic. Roots are x-coordinate for x-intercepts
- Pythagorean Theorem
 - \circ $a^2 + b^2 = c^2$ is relationship between the lengths of the sides of a right triangle
 - use methods of solving quadratic equations to find solutions for application problems
 - remember extraneous roots (solutions that aren't valid) arise from such problems
- Use of Function Notation
 - \circ If f(x) is a polynomial, P(x), then finding the values of x that make P(x) = # is solving a quadratic equation
- Parabolic Motion
 - \circ An object's motion when it is thrown, launched, etc. can be described using a quadratic.
 - The height at time t is what the equation describes.
 - \circ Setting the function equal to zero, finding P(x) = 0, finds the time it will take for the object to reach the ground.
 - If asked to find time to reach the ground solve a quadratic!

Rational Expressions & Equations (Ch. 6)

- Finding the Domain of a Rational Expression (§6.1)
 - Also called: Finding restrictions or finding the zeros or finding where it is undefined 0
- Set denominator equal to zero, solve equation & eliminate the values from the domain 0
- Simplifying a Rational Expression (§6.1)
 - NO CANCELING in ADDITION!! Factor before canceling!
 - Factor numerator & denominator & cancel
 - Don't forget GCF is factoring too!
 - ./ See Factoring Strategies in Ch. 5
- Multiply/Divide Rational Expressions (§6.1)
 - Factor and cancel in multiplication
 - If division make sure to take reciprocal of divisor (2nd poly.) and multiply by dividend (1st poly.) then multiply
 - Adding/Subtracting Rational Expressions (§6.2)
 - Find an LCD

 \cap

0

- Factor denominators, "unique factors" to HIGHEST exponent (not sum of all exponents)
- Build higher terms Multiply numerator by what's missing - EXPAND it out
- Distribute subtraction across polynomial of subtrahend (poly. after subtraction symbol) 0
- Add numerators, and carry along LCD 0
- Factor numerator & cancel if possible to simplify
- Complex Fractions (§6.3)
 - Find LCD of ALL denominators of all terms in the complex fraction
- 0 Multiply all terms by LCD, CANCEL & expand is needed, then see steps for simplifying a rational expression 0
- Division of Polynomials (§6.4 & §6.5)
 - Dividing by a MONOMIAL NOT using long division; break into terms, with each term in num. over denom. 0
 - Dividing by Polynomial
 - Long Division
 - Like #'s Divide, multiply, subtract, bring down
 - Be careful of the binomial & subtraction
 - Write remainders over divisor & ADD them to quotient
 - Synthetic Division
 - Only when divisor is 1^{st} degree w/ no leading coefficient (x c)
 - Divisor must read: x c
 - c | a b c d e and then bring down a and multiply by c to go under b, & continue the pattern
 - Answer is one degree less than original terms
- Remainder Theorem ($\S6.5$)
 - If P(x) is a polynomial, then the remainder of $P(x) \div (x c)$ is the same as P(c)0
- Solving Equations (§6.6)
 - Use LCD of denominators to clear 0
 - Find restrictions 0
 - 2 types of equations can result from clearing Linear vs Quadratic (or higher) 0
 - Decide how to solve and solve
- Always compare solutions to restrictions before answering 0
 - Solving Equations for a Single Variable ($\S6.7$)
 - Variables in denominator this time around 0
 - Clear 1st & proceed as in previous chapters
 - ~ Factoring may occur too, if YOUR variable is in TWO terms, group those terms & factor to solve
- Variation Problems (§6.8)
 - Direct, Indirect/Inverse, Joint & Compound
 - Modeling using variation 0

This is a maybe depending on our coverage today, 4/19

- Applications (§6.7)
 - Translation problems AGAIN (just with reciprocals)
 - Distance problems AGAIN 0
 - Work Problems (just like distance) 0
 - $R = \frac{1}{totatl time}$ & equation W = RT,
 - Time is individual
 - Solve with $W_1 + W_2 = 1$, since work contributed by each individual gets the WHOLE job done