Test \#3 Concepts Ch. 3,§4.1-4.2 \& §5.3-5.5

Systems of Equations (Ch. 3)

- Methods of Solving
- Graphing (§3.1)
- Substitution (§3.1)
- Elimination/Addition (§3.1)
- System of 3×3 or larger (§3.3)
- Triangulation/Gaussian Elimination/Using Matrices (§3.4)
- Cramer's Rule (§3.5)
- Three Types of 2×2 Systems \& Their Solutions
- Consistent/Independent
\checkmark Ordered Pair Solution
- Consistent/Dependent
$\checkmark \quad$ Infinite Solutions (Same Lines)
- Inconsistent/Independent
$\checkmark \quad$ No Solution (Parallel Lines)

Linear Inequalities in 1 Variable (Ch. 4.1-4.3)

- Solve as Linear Equation in 1 Variable except with mult/divide by negative
- Multiply or Divide by a Negative \& Reverse the Inequality
- Simple Linear Inequality is Just Like Equation but keep inequality \& remember above
- Compound you are solving 2 equations simultaneously
$\checkmark \quad$ Variable stays in the middle!! Work from middle to outsides!
- Can have all real as solution \& no solution
- Graph inequalities on number line
- Less Than or Greater Than \rightarrow Parentheses on the endpoint
- Greater (Less) Than or Equal To $\boldsymbol{\rightarrow}$ Bracket on the endpoint
- Interval Notation is a "SNAPSHOT" of the number line
- Left endpoint comma right endpoint with information about inclusion using brackets \& parentheses

Linear Inequalities in 2 Variables (Ch. 4.4)

- Solutions/Graphs (It is all the same)
- Graph inequalities on graph
- Boundary Lines (Solid/Dotted)
- 1 Check Pt. based upon inequality of slope-int. form
- Use 3 ordered pairs to graph line

Word Problems Using Systems (Ch. 3.2\&3.3)

- Chemistry
- Simple Interest
- Grocery Store/Value Problems
- Distance Problems
- Modeling Linear Systems

Factoring (§5.3-5.5)

- Combining any of the Methods w/ GCF or Substitution
- Trinomials (§5.4-5.5)
- Perfect Square Trinomial (5.5)
- Leading Coefficient 1 (5.4)
- Leading Coefficient not 1 (5.4)
$\checkmark \quad$ By Grouping(5.4)
- By Substitution
\checkmark To factor higher degree than second
$\checkmark \quad$ To factor with quadratic form
- Binomials (§5.5)
- Difference of 2 Perfect Squares $a^{2}-b^{2}=\left(\operatorname{root}\right.$ of $1^{\text {st }}+\operatorname{root}$ of $\left.2^{\text {nd }}\right)\left(\operatorname{root}\right.$ of $1^{\text {st }}-\operatorname{root}$ of $\left.2^{\text {nd }}\right)$
- Sum of 2 Perfect Squares - Prime
- Sum \& Difference of 2 Cubes $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$

