Test \#2 Concepts Review (Ch $2-\S 3.1,4.4, \& 5.3$)

Functions (§2.1-2.3)

Domains \& Ranges
Evaluation using $f(x)$ notation: The Algebra of Functions

$$
\text { Find } \mathrm{f}+\mathrm{g}(2)
$$

$f(x)=5$, find x on a graph
Special Functions as they apply to $f(n)$
Shapes \& Functions' Forms
Parabolas
Cubic
Absolute Value
Square Root
Set Notation as it applies for $F(n)$ etc.
Roster Form - List Finite or describable infinite
Set Builder - Describes infinite sets

Linear Equations in 2 Variables ($\S 2.4$ \& 2.5)

Slope
Equation of line parallel or perp.
Rise over Run on graph
$\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$ from 2 ordered pairs
Intercepts
X-Intercept: Crosses x -axis, where $\mathrm{y}=0$
Y-Intercept: Crosses y-axis, where $\mathrm{x}=0,(0, \mathrm{~b})$ as ordered pair
Slope Intercept Form: $y=m x+b$
$\mathrm{m}=$ slope $\& \mathrm{~b}$ is y -intercept
Graphing using $\mathrm{y}=\mathrm{mx}+\mathrm{b}$
Horizontal \& Vertical Lines
Equations
Ordered Pairs
Slopes
Parallel \& Perpendicular Lines
Based on slopes
Building Equations of Lines
Know slope \& y-intercept use : y $=\mathrm{mx}+\mathrm{b}$
Slope found in 3 ways
Equation of line parallel or perp.
Rise over Run on graph
$\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) /\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)$ from 2 ordered pairs
Y-Intercept
Crosses y-axis on graph
$(0, b)$ in ordered pair
$b=$
Know only slope \& not y -intercept use: $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
See above for slope

Linear Inequalities in 2 Variables ($\$ 4.4$)

Graphing is Solving
Boundary Line to start (equation as an equality)
Dotted for strict $<$ or $>\&$ Solid for \leq or \geq
Shade according to $\mathrm{y}>\mathrm{mx}+\mathrm{b}$ or $\mathrm{y}<\mathrm{mx}+\mathrm{b}$
Check point in shaded region to check

Factoring (§5.3)

GCF
Numeric GCF - Find all factors \& highest is GCF
Variable GCF - Lowest exponent; remember DNE then not in GCF
Binomial GCF - When factored ends up binomial x binomial
Factoring by Grouping
Two applications of GCF, $1^{\text {st }}$ after grouping \& $2^{\text {nd }}$ is binomial GCF

Solving Systems of Linear Equations in 2 Variables (§3.1)

3 Differing Solutions: A single ordered pair, No Solution/Null Set, Infinite Sol.
Solve using Graphing
Solve using Substitution
Solve using Elimination/Addition
Don't forget about these things as they apply to above concepts

Translation of Mathematical \& Algebraic Expression and Algebraic Equations

Know words for operators
Addition: sum, total, plus, increased by, added to, greater than, years older than
Subtraction: subtract, less, difference of, decreased by, take away, subtracted from, years younger than, less than
Multiplication: multiply, product, twice, times, at, of, repeated addition
Division: divided by, ratio, quotient, divide
Exponents: squared, cubed, raised to the power of (or a portion of this)
Equals: any form of "to be" (is, was, were, etc.), yields, equals
Parentheses: 4 phrasings
Define variable if used
Simplifying Algebraic Expressions
Can't be solved
Can't be cleared
Use distributive property
Combine like terms (use skills with fractions, decimals, mixed \#'s, integers)
Solving Equations
Clearing of Fractions \& Decimals (not solving, just clearing)
Solving using distributive prop., simplification, add. prop. \& mult. prop.
Give solution set as $x=\#$ or $\{\#\}$ or Null Set or All Reals
Know the indicators for Identities \& Contradictions \& Solutions as a Result
Identity Indicator is \#1 = \#1 and the solution is All Reals
Contradiction Indicator is \#1=\#2 and the solution is Null Set

Rectangular Coordinate System \& Graphing

Plotting \& Labeling Ordered Pairs \& Quadrant Information
Linear Equations in 2 Variables
Using Slope-Intercept Form
Non-Linear Equations
$2^{\text {nd }}$ Degree Equations/Quadratic
Recognize: Shape, Up/Down, Vertex, Symmetry
Cubic Function
Recognize: Shape, Increasing/Decreasing, Center, Symmetry Absolute Value

Recognize: Shape, Up/Down, Vertex, Symmetry

