## Concepts on Test \#2 - Cañada M200 F12

## Chapter 3

Descriptive Statistics
Mean, Median, Mode, Variance, Std. Dev.
Correct notation
Correct Round-Off ( 1 more decimal place than original data)
5 Number Summary
Minimum, $1^{\text {st }}$ Quartile, Median, $3{ }^{\text {rd }}$ Quartile, Maximum
Indicator Function for finding Quartiles
Box Plot
Scaled (separate from the boxplot) \& Correctly Drawn/Labeled
Discuss the meaning of the shape
Skew of the Data
Symmetric, Right \& Left
Visual Representation
Mean, Median \& Mode Comparison
Potential Outliers
IQR \& 1.5IQR from $\mathrm{Q}_{1} \& \mathrm{Q}_{3}$
Usual Values
Min \& Max via standard deviation \& mean
Empirical Rule
$68 \%, 95 \%, 99.7 \%$ \& relation to z-score
*Finding a Z-score (standardizing)
Value minus mean all divided by standard deviation

## Chapter 4

3 Ways to Calculate Probability
Relative Frequency \& Classic Probability being 2 most important
Independent vs Dependent Events
Unions \& the Addition Rule
Intersections \& the Multiplication Rule
Conditional Probability
Complements
Finding Probability Via
Contingency Tables
Relative Frequency Tables
Counting Rules
Multiplication or Counting Rule
Factorial
Permutations - Arrangements, Sequences ORDER MATTERS
Combination - Groups ORDER DOESN'T MATTER

## Chapter 5

Discrete Probability Distributions
Using Classic Probability to get PDF
Know sum of all probability is 1

Know that probability is between 0 \& 1
$\mathrm{P}(\mathrm{x})=0$ means event can't happen
$P(x)=1$ means only one way an event can happen
Know mean \& standard deviation calculated from pdf (like ch. 2 from a frequency table)
Probability Histograms
Relate to Relative Frequency Histogram from Ch. 2
Know sum of area is 1
Know height of bars equals probability
Know width of bars is always 1 therefore area in each bar equals probability
Know that bars center over random variable
Finding Probability of an Event, Union of Events, Series of Events etc.

## Chapter 5

Binomial Probability Distribution Function
The 4 assumptions of binomial

- 2 possible outcomes
- fixed \# of trials
- constant probability for success
- each is trial is independent

The "Defining Formula"/Distribution Function
What are $\mathrm{n}, \mathrm{x}, \mathrm{p}, \& \mathrm{q}$
How to find probabilities for a binomially distributed random variable
Using formula set up
Using your calculator

$$
\mathrm{P}(\mathrm{X}=\mathrm{x}), \mathrm{P}(\mathrm{X}<\mathrm{x}), \mathrm{P}(\mathrm{X}>\mathrm{x}), \mathrm{P}(\mathrm{X} \leq \mathrm{x}), \mathrm{P}(\mathrm{X} \geq \mathrm{x}), \mathrm{P}(\mathrm{x}<\mathrm{X}<\mathrm{x})
$$

Mean \& Standard Deviation using n, p \& q

## Chapter 6

How to Standardize a Non-Standard Normal Random Variable *(Z-score)
Relation to Empirical Rule
Finding probabilities using calculator
Finding Probability of a Normal Random Variable (Std. or Not)
How to draw a probability on a normal curve
Using probability notation to write your probabilities
On a calculator
How to set up for a left-tail look up, in a table (or on a calculator)
Inverse Normal Distribution
Critical Values
Percentiles Related
Continuous Uniform Distribution
Finding the probability
Finding area under the density curve
Using area under curve to give probabilities

