Study Guide Test \#2 M120 Sp 15 (Ch. 9 \& 5.3)

Skills \& Details of Quadratics

- Meaning of Discriminant
\checkmark Indicates number and type of solutions to a quadratic
\checkmark Practical application in graphing a parabola to indicate number of x-intercpets
- Methods of Solving Quadratics (remember this finds x-intercepts)
\checkmark Zero Product (Factor) Property
\checkmark Quadratic Formula
\checkmark Square Root Property
\checkmark Completing the Square
Graphing Parabolas
- Finding vertex
\checkmark vertex form
$\checkmark\left(-\frac{\mathrm{b}}{2 \mathrm{a}}, \mathrm{f}\left(-{ }^{\mathrm{b}} / 2 \mathrm{a}\right)\right)$
\checkmark using symmetry
- Finding y-intercept
\checkmark constant in std form $-a^{2}+b x+c$
\checkmark let $x=0$ and find value in vertex form
- Finding x-intercept
\checkmark Let $\mathrm{y}=0$ and solve for x
\checkmark standard form factor or use quadratic formula
\checkmark vertex form use square root property
- Finding symmetric points
\checkmark symmetry from vertex's x-value (axis of symmetry)
Using Parabola's Equation to Find
- Maximum/Minimum Value of a Function
\checkmark Vertex y-value is maximum if negative " a " \& minimum if positive " a "
\checkmark The x -value is the dependent value that yields the $\mathrm{max} / \mathrm{min}$ (many times it is a time)
- Time for a projectile to hit the ground
\checkmark The x-intercept (remember that many times one solution is extraneous)
- Time for a projectile to reach any given height
\checkmark Set function equal to height and solve as you would x-intercept
Modeling Parabolas \& Differentiating from Linear Models
- Vertex is known (or can be determined to be known due to symmetry)
\checkmark Use vertex form \& substitute in one other point to solve for "a"
- Vertex is unknown
\checkmark Use 3 ordered pairs to create a third order system to solve for a, b \& c in standard form
- Real World Data
\checkmark Use symmetry to determine a vertex
\checkmark From a scatterplot, determine a value that seems to lie on your sketch of a parabola that comes close or hits as many points as possible
\checkmark Use vertex and point to create equation using vertex form
\checkmark Alternately: Use Quadratic Regression
- Linear Models Have Constant Rate of Change \& Quadratic Models won't

Solving Systems of Equations

- $2^{\text {nd }}$ Order by Elimination from Ch. 5
- $3^{\text {rd }}$ Order by Elimination from Ch. 9

