§9.7 Solving Systems of Linear Eq. in 3 Var \& Finding Quadratic F(n)

Linear Equation in Three Variables

For $\mathrm{A}, \mathrm{B}, \mathrm{C} \& \mathrm{D} \in \mathbb{R}$ where $\mathrm{A}=\mathrm{B}=\mathrm{C}=\mathrm{D} \neq 0$

$$
A x+B y+C z=D
$$

will have solutions of the form $\quad(x, y, z)$
The solution to a system of three equations, in three unknowns (a third order system) is called an ordered triple. An ordered triple is just like an ordered pair, but in coincides with a system that has 3 dimensions. We usually use the axes $\mathrm{x}, \mathrm{y} \& \mathrm{z}$ in a three dimensional coordinate system, where the $\mathrm{x} \& \mathrm{y}$ are the same axes that we are familiar with and the z comes out of the paper at us. Just like the ordered pair, an ordered triple is always written in alphabetical order in parentheses: (x, y, z). The solution to a system of 3 equations in 3 unknowns is just like the solution to a system in 2 unknowns. To check to see if we have a solution the solution must work for all equations. We can also have dependent, consistent systems and independent inconsistent systems, but the scenarios are a little more complex. I will refer you to p. 541 of Lehmann's text for some visual aids.

Example: Is ($0,5,7$) a solution to: $\quad \mathrm{x}+\mathrm{y}+\mathrm{z}=12$
$x+y=5$
$x+y-z=2$

Solving a $3^{\text {rd }}$ Order System Using Addition (Elimination)

Step 1: Select 2 equations and eliminate a single variable using addition/elimination
Step 2: Select a different pair of equations and eliminate the same variable as in Step 1
Step 3: Step $1 \&$ Step 2 will result in 2 equations without one of the 3 variables - Use elimination or substitution on these 2 equations to solve for the 2 remaining variables.
Step 4: Finally use the 2 values found in Step 3 and substitute into any equation to solve for the $3^{\text {rd }}$ and final value.
Step 5: Write the answer as an ordered triple
Example: $\quad x+y-z=-3$

$$
\begin{array}{r}
x+z=2 \\
2 x-y+2 z=3
\end{array}
$$

Example: $\quad-\mathrm{x}+3 \mathrm{y}+\mathrm{z}=0$

$$
-2 x+4 y-z=0
$$

$$
3 x-y+2 z=0
$$

Example: $\quad 2 \mathrm{x}+\mathrm{y}+2 \mathrm{z}=1$

$$
x-2 y-z=0
$$

$$
3 x-y+z=2
$$

Note: One of the steps yields a false statement and this how we know that there is no solution to this problem.
Example: $\quad-1 / 4 x+1 / 2 y-1 / 2 z=-2$
$1 / 2 x+1 / 3 y-1 / 4 z=2$
$1 / 2 x-1 / 2 y+1 / 4 z=1$

Example: $\quad 3 x-4 y+z=4$

$$
\begin{gathered}
x+2 y+z=4 \\
-6 x+8 y-2 z=-8
\end{gathered}
$$

Note: One of the steps yields a true statement and this how we know that there are infinite solutions to this problem. Unlike 2 equations and 2 unknowns however, there are 2 scenarios under which this can happen. The first is that all 3 planes are parallel and the other is when all three intersect in a line.

An Application of Third Order Systems

Can be used to find a model for a parabola when 3 points on the parabola are known/given.

1) Substitute (x, y) from each ordered pair into $y=a x^{2}+b x+c$
2) Solve the resulting $3^{\text {rd }}$ order system
3) Use the results of $a, b \& c$ to write a quadratic model in the form of $y=a x^{2}+b x+c$

Example: Find the equation of the parabola that passes through the 3 points (\#18 p. 545 Intermediate Algebra, ${ }^{\text {st }}$ Edition, Jay Lehmann)

$$
(1,1),(2,5),(3,15)
$$

Class Exercises \& Homework

§9.7 p. 544 \#1, 5, 14, 15, 22, 27, 51, 52, \#53-58all

