Study Guide for Test \#1 - M120 Sp 15

- \quad Sets \& Notation
- Subets of Real Numbers (Symbol: \mathbb{R})
\checkmark Rational Numbers (Symbol: R)
\checkmark Rational Numbers (Symbol: Q)
\checkmark Integers (Symbol: I)
\checkmark Whole Numbers (Symbol: W)
\checkmark Counting/Natural Numbers (Symbol: N)
- Setbuilder Notation
\checkmark Description
\checkmark Integers: $\left\{\mathrm{x} \mid \mathrm{p}, \mathrm{q} \in \mathrm{I}, \mathrm{x} \in{ }^{\mathrm{p}} / \mathrm{q}, \mathrm{q} \neq 0\right\}$
- Roster Form
\checkmark List of elements
\checkmark Not for R, Q (unless finite subset of)
\checkmark Best for a W, I, N
\checkmark Integers: $\{\ldots-3,-2,-1,0,1,2,3, \ldots\}$
- Interval Form
\checkmark Assumes all real numbers within endpoints
\checkmark Uses [or] to show endpoint inclusion
\checkmark Uses (or) to show endpoint not included
\checkmark Infinity is never included, always (or)
\checkmark Mimics \# Line in order property
- Union
\checkmark Mathematical "or"
\checkmark Symbol: u
\checkmark Collection of all
- Intersection
\checkmark Mathematical "and"
\checkmark Symbol: \cap
\checkmark Overlap
- Solving Simple Linear Inequalities
- Just like equation except when multiply/dividing by negative
\checkmark Multiply/divide by negative reverses inequality
- Solving a Compound Linear Inequality
- Intersection (Mathematical "and") of 2 simple inequalities - middle to left \& middle to right
- Solve simply by solving 3 parts
- Function Details
- Domain, Input, Independent Variable
- Range, Output, Dependent Variable
- Distinguish Function
- One input yields ONLY one output
\checkmark See multiple of same x with different y 's is not a function
\checkmark Multiple outputs same is OK
- Vertical Line Test
\checkmark Graph of a function - any vertical line can only touch graph once
- Recognizing Special Functions Helps
\checkmark Quadratic, Cubic, Absolute Value, Square Root, Vertical \& Horizontal Lines
- Distinguish a LINEAR function \& NONLINEAR functions
- Constant rate of change
- Function Notation
- $\mathrm{f}(\mathrm{x})$ means the dependent value (output)
- x is the independent value (input)
- All Previous Knowledge Using Function Notation
- Evaluation of an expression using
- Values from graphs
- Values from tables
- Absolute Value Equations \& Inequalities
- Equality - solve with 2 opposite endpoints
- Inequality
$\checkmark>$ or \geq is a union of two
$><$ neg endpoint or $>$ pos endpoint
$\checkmark<$ or \leq is an intersection of two
$>$ trapped between neg endpoint and pos endpoint as a compound inequality
- Factoring Strategies
- GCF
\checkmark Only Factor Method
\checkmark As a first step
- By Grouping
- Trinomials
\checkmark Perfect Square Trinomial
\checkmark Leading Coefficient 1
\checkmark Leading Coefficient not 1
\checkmark By Grouping
\checkmark Traditional Method
- Binomials
\checkmark Difference of 2 Perfect Squares $\mathrm{a}^{2}-\mathrm{b}^{2}=\left(\right.$ root of $1^{\text {st }}+$ root of $\left.2^{\text {nd }}\right)\left(\right.$ root of $1^{\text {st }}-$ root of $\left.2^{\text {nd }}\right)$
\checkmark Sum of 2 Perfect Squares - Prime
\checkmark Sum \& Difference of 2 Cubes $\quad a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
- Solving Quadratic Equations
- Zero Factor Property
\checkmark Std. Form, Factor \& Set Factors Equal to Zero to Solve
- Applications of Quadratics
- Parabolic Motion Problems to find time at given height or when object hits the ground
- Areas of Geometric figures \& Pythagorean Theorem Problems
- X-Intercepts of a parabola

