Name: \qquad M120 - Fall 2014

1. Find the y-intercept and the axis of symmetry for: $f(x)=-2 x^{2}+2 x+2$
2. Graph each of the following. Use the vertex, y-intercept \& symmetric point, and x-intercepts (if necessary estimate to the nearest $10^{\text {th }}$). I've attached four graphs for your use.
a) $\quad f(x)=-2 x^{2}+2 x+2$
b) $\quad f(x)=x^{2}-2 x+2$
c) $\quad f(x)=-x^{2}+2 x+7$
d) $\quad f(x)=x^{2}-2 x+7$
3. Solve by factoring.
a) $\mathrm{x}^{2}+3 \mathrm{x}-28=0$
b) $2 x^{2}+3 x-14=0$
4. Solve using the square root property
a) $16 \mathrm{x}^{2}-48 \mathrm{x}+36=49$
b) $100 x^{2}-80 x+16=9$
5. Solve by completing the square.
a) $x^{2}+2 x-3=0$
b) $\quad 2 x^{2}+2 x=0$
6. Give the value of the discriminant and then give the number and type of solutions.
a) $\quad-x^{2}-14 x+2=0$
b) $x^{2}+x+7=0$
7. Write in vertex form (hint: complete the square) and give the vertex. We will probably need to go over this, but for pre-calculus and for calculus it is essential you know how to complete a square.
a) $y=x^{2}+4 x-6$
b) $y=-3 x^{2}+48 x$
8. Use vertex form to write an equation for the parabola whose vertex is $(2,6)$ and which passes through $(4,-1)$.
9. Use vertex form to write an equation for the parabola whose vertex is $(3,3)$ and which passes through (5, 27).
10. The height of a pebble dropped from a 604 foot high cliff is described by the formulas $h(t)=-16 t^{2}+604$. How long will it take for the pebble to reach a height of 348 feet?
11. The revenue p of a company is described by $\mathrm{p}(\mathrm{x})=20000+5 \mathrm{x}^{2}$, where x is the number of units sold. How many units would be produced, causing the company's revenue be at a minimum?
12. A rectangular frame has length $(x+2)$ units and width $(x-4)$ units. If the area is 7 square units, what is the value of x ?
13. The shape of a window is a parabola that can be modeled with the equation $h(w)=-2 w^{2}+12$, where $h(w)$ is the height of the window and w is the width in feet. What width will maximize the height of the window?
