Name: \qquad M110

Instructions: Complete these problems for homework due on the date above. The problems should look very similar to those that were covered during our class meeting covering §7.2-7.3 \& §8.2. As always show all work and please box your final answer.

1. Use the commutative and associative properties of multiplication to move the factors of the monomials together. Use exponent rules to simplify.
a) $\quad 12 x y^{6}\left(-5 x^{9} y^{4}\right)$
b) $\quad\left(-5 / 8 x^{6}\right)\left(-{ }^{8} / 15 x^{13}\right)$
2. Use the distributive property to create a sum of terms from the monomial multiplied by a polynomial. Use the commutative and associative properties of multiplication to move the factors of the terms together. Use the exponent rules to simplify each term.
a) $\quad-14 x^{2}\left(3 x y-2 y^{2}\right)$
b) $\quad 3 x^{2} y\left(1 / 3 x^{2} y^{2}-5 x y+4 y\right)$
3. Simplify the following polynomials using the FOIL to help you remember the distributive property for two terms. Don't forget to combine like terms!
a) $(x+4)(x+7)$
b) $(x-4)(x-7)$
c) $(x+7)(x-4)$
d) $(x-7)(x+4)$
4. Use the "pattern" that we established in our class discussions to quickly find the values for each of the following.
a) $(x+9)(x-1)$
b) $\quad(x-3)(x-6)$
c) $(x+10)(x-2)$
d) $(x-5)(x-8)$
5. Use FOIL to multiply:
a) $(x+4 y)(x+3 y)$
b) $\quad(3 x-2)\left(x^{2}+4\right)$
c) $(2 y-7)(3 y-1)$
6. Using the same technique as multiplying numbers (treating degree terms like place values), multiply the following polynomials.

$$
(3 x-2)\left(4 x^{2}+5 x-2\right)
$$

7. Use the pattern $(a \pm b)^{2}=a^{2} \pm 2 a b+b^{2}$ to multiply each of the following.
a) $(x+7)^{2}$
b) $(x-4)^{2}$
c) $\quad(2 x+9 y)^{2}$
8. Using the pattern $(a+b)(a-b)=a^{2}-b^{2} \quad$ to find the following products.
a) $(x+5)(x-5)$
b) $\quad(2 x-3)(2 x+3)$
c) $\left(x^{2}+4 y\right)\left(x^{2}-4 y\right)$
9. Find the GCF of the terms and factor it out to rewrite as a product of the GCF and a polynomial (that is a sum of terms resulting from the quotient of the original term and the GCF). *If a leading coefficient is negative factor a negative always!
a) $12 x^{2} y-28 x^{3} y-48 x$
b) $\quad 36 x^{6} y^{2} z-45 x^{5} y z^{4}+81 x^{3} y^{3} z^{2}$
c) $\quad-5 x^{2} y+15 x y-35 y$
10. GCF's can also be binomials. Factor the binomial GCF from each of the following.
a) $3 y(z-2)-7(z-2)$
b) $\quad\left(3 x^{2}+x\right)(3 y-5)+2(3 y-5)$
11. Sometimes we will put concepts together. For instance we will use our factoring of a GCF and factoring of a binomial GCF to factor a polynomial with 4 terms. This strategy is called factoring by grouping. Factor each of the following by grouping.
a) $3 x^{3}+3 x y^{2}+2 x^{2} y+2 y^{3}$
b) $5 x^{2}+15 x y-2 x y-6 y^{2}$
