Name: _______ Paper HW #13 Due 11/10/15 M110

Instructions: Complete these problems for homework due on the date above. The problems should look very similar to those that were covered during our class meeting covering §7.2-7.3 & §8.2. As always show all work and please box your final answer.

- 1. Use the commutative and associative properties of multiplication to move the factors of the monomials together. Use exponent rules to simplify.
- b) $(-\frac{5}{8}x^{6})(-\frac{8}{15}x^{13})$ $12xy^{6}(-5x^{9}y^{4})$ a)
- 2. Use the distributive property to create a sum of terms from the monomial multiplied by a polynomial. Use the commutative and associative properties of multiplication to move the factors of the terms together. Use the exponent rules to simplify each term.
- $3x^2y(\frac{1}{3}x^2y^2 5xy + 4y)$ $-14x^{2}(3xy - 2y^{2})$ b) a)
- 3. Simplify the following polynomials using the FOIL to help you remember the distributive property for two terms. Don't forget to combine like terms!
- (x + 4)(x + 7)b) (x - 4)(x - 7)a)
- (x + 7)(x 4)d) (x - 7)(x + 4)c)

- Use the "pattern" that we established in our class discussions to quickly find the values for each 4. of the following.
- b) (x 3)(x 6)(x + 9)(x - 1)a)
- d) (x 5)(x 8)c) (x + 10)(x - 2)

5. Use FOIL to multiply:

a)
$$(x + 4y)(x + 3y)$$
 b) $(3x - 2)(x^2 + 4)$ c) $(2y - 7)(3y - 1)$

6. Using the same technique as multiplying numbers (treating degree terms like place values), multiply the following polynomials.

$$(3x - 2)(4x^2 + 5x - 2)$$

7. Use the pattern $(a \pm b)^2 = a^2 \pm 2ab + b^2$ to multiply each of the following. a) $(x + 7)^2$ b) $(x - 4)^2$ c) $(2x + 9y)^2$

8. Using the pattern $(a + b)(a - b) = a^2 - b^2$ to find the following products. a) (x + 5)(x - 5) b) (2x - 3)(2x + 3) c) $(x^2 + 4y)(x^2 - 4y)$

- 9. Find the **GCF** of the terms and factor it out to rewrite as a product of the GCF and a polynomial (that is a sum of terms resulting from the quotient of the original term and the GCF). <u>*If a leading coefficient is</u> negative factor a negative always!
- a) $12x^2y 28x^3y 48x$ b) $36x^6y^2z 45x^5yz^4 + 81x^3y^3z^2$

c) $-5x^2y + 15xy - 35y$

- 10. GCF's can also be binomials. Factor the **binomial GCF** from each of the following.
- a) 3y(z-2) 7(z-2)b) $(3x^2 + x)(3y - 5) + 2(3y - 5)$

Sometimes we will put concepts together. For instance we will use our factoring of a GCF and factoring of a binomial GCF to factor a polynomial with 4 terms. This strategy is called factoring by grouping. Factor each of the following by grouping.
a) 3x³ + 3xy² + 2x²y + 2y³
b) 5x² + 15xy - 2xy - 6y²